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Venue 
 

The conference will be held on Loyola’s Water Tower Campus, located along Pearson Street, just off 
North Michigan Avenue, Chicago’s famed “Magnificent Mile. The Water Tower Campus derives its name 
from the famous Chicago Water Tower, which survived the Great Chicago Fire in 1871. The campus sits 
in the shadow of the iconic John Hancock Center. Other nearby architectural landmarks are the Tribune 
Tower, the Wrigley Building, the Trump Tower, and the site of Fort Dearborn, around which the city of 
Chicago was founded. Holy Name Cathedral and the Roman Catholic Archdiocese of Chicago are located 
just south of campus, across Chicago Avenue. Cultural points of interest include the Museum of 
Contemporary Art, the Newberry Library, and Navy Pier. In addition to the unparalleled shopping on 
Michigan Avenue, the Water Tower Campus is also within a few minutes’ walk of numerous dining and 
entertainment options. 

 

Social Agenda 

In addition to a broad look at the future of transportation, this workshop will provide numerous 
opportunities to network with colleagues and establish new working relationships.  

A welcome reception overlooking downtown Chicago will start the event on Wednesday evening. The 
welcome reception is open to all registrants and has been generously sponsored by APICS.  

 

APICS is the premier professional association for supply chain management and the leading provider of 
research, education and certification programs that elevate supply chain excellence, innovation and 
resilience. The APICS Certified in Production and Inventory Management (CPIM), APICS Certified Supply 
Chain Professional (CSCP), APICS Certified in Logistics, Transportation and Distribution (CLTD) and APICS 
Supply Chain Operations Reference Professional (SCOR-P) designations set the industry standard. With 
over 45,000 members, over 130,000 certified professionals, and approximately 300 channel partners 
internationally, APICS is transforming the way people do business, drive growth and reach global 
customers. APICS is dedicated to building greater awareness of the supply chain profession and develops 
lifelong learning content to ensure that the number and quality of students and professionals meets 
industry's needs. For more information, visit apics.org. 

On Friday evening, we will adjourn for dinner at the Chicago Museum of Contemporary Art, with an 
opportunity to explore the collection prior to and after dinner.  This reception is open to all those who 
submitted a regular (non-student) registration.   

Lunches will be provided on site each day of the conference.  
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Plenary Sessions 

Dr. Kimberly Ross  
Transportation Optimization – Experiences from the Field 

Thursday, July 27, 11:00 – 12:00 PM 

Dr. Kimberly Ross has spent over 20 years consulting and developing optimization solutions for some of the 
largest shippers in North America including well-known retailers, grocers, food, and wholesale pharmaceutical 
distributors. In this talk, she will share some of her unique transportation modeling experiences including 
large-scale inbound planning for multi-model, dynamic cross-dock optimization typical of big-box retail, 
outbound planning with restricted time windows, split deliveries, tandem orchestration, and backhauls that 
are pervasive in the grocery market, and high density multi-stop routing optimization for food and 
pharmaceutical distribution with relays, cross-docks, and hybrid static/dynamic routing considerations. 
Additionally, she will share some of the challenges her customers face as they look to take advantage of 
promising supply chain optimization synergies as well as explore options that new technologies in big data and 
cloud computing may provide.  

Dr. Kimberly Ross is Vice President of Research & Development at Manhattan Associates responsible for the 
Science team overseeing all optimization capabilities across the product suite including Transportation 
Management, Warehouse Management, Slotting Optimization, Demand Forecasting, and Inventory 
Optimization. She received her B.S. from Sanford University in Mathematical Sciences and her Ph.D. from 
Princeton University in Operations Research and has over 20 years of experience designing and 
implementing mathematical optimization algorithms to solve highly complex real-world problems, mostly in 
the transportation and logistics industries. 

Dr. Peter Frazier  
Providing Reliable Transportation at Uber 

Friday, July 28, 11:00 – 12:00 PM 

Ridesharing is revolutionizing transportation in cities.  A central task in ridesharing is providing reliable 
transportation to riders and attractive earnings to drivers when neither group is under centralized control.  
This is especially challenging given that weather, traffic, sporting events, and holidays frequently cause hard-
to-predict imbalances between riders' and drivers' willingness to participate in the market.  We discuss 
approaches and mathematical models used at Uber to overcome this challenge, and provide an overview of 
other exciting new research questions in transportation opened by the growth of ridesharing. 

Dr. Peter Frazier is an Associate Professor in the School of Operations Research and Information Engineering 
at Cornell University, and a Staff Data Scientist and Data Science Manager at Uber. He received a Ph.D. in 
Operation Research and Financial Engineering from Princeton University in 2009. His research is in optimal 
learning, sequential decision-making under uncertainty, and machine learning, focusing on applications in 
simulation, e-commerce, medicine, and biology. He is an associate editor for Operations research, ACM 
TOMACS, and IISE Transactions, and is the recipient of an AFOSR Young Investigator Award and an NSF 
CAREER Award.  
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Program Overview 
 
Wednesday, July 26  

3:15 – 5:15 PM Connected Traffic & Transportation 
(Joint Session with ISTTT) 

5:30 – 7:00 PM Welcome reception 
 

Thursday, July 27  

7:30 – 6:00 PM Registration 
8:30 – 10:30 AM Parallel sessions 

10:30 – 11:00 AM Break 
11:00 – 12:00 PM Plenary talk (Dr. Kimberly Ross) 

12:00 – 1:00 PM Lunch 
1:00 – 2:30 PM Parallel sessions 
2:30 – 2:45 PM Break 
2:45 – 4:15 PM Parallel sessions 
4:15 – 4:30 PM Break 
4:30 – 6:00 PM Parallel sessions 

 

Friday, July 28  

7:30 – 6:00 PM Registration 
8:30 – 10:30 AM Parallel sessions 

10:30 – 11:00 AM Break 
11:00 – 12:00 PM Plenary talk (Dr. Peter Frazier) 

12:00 – 1:00 PM Lunch 
1:00 – 2:30 PM Parallel sessions 
2:30 – 2:45 PM Break 
2:45 – 4:15 PM Parallel sessions 
4:15 – 4:30 PM Break 
4:30 – 6:00 PM Parallel sessions 

 

Saturday, July 29  

9:00 – 11:00 AM Parallel sessions 
11:00 – 11:15 PM Break 
11:15 – 12:45 PM Parallel sessions 

1:00 – 1:30 PM TSL Cross-region Dissertation Grant Winner 
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Technical Program 
 
   

Connected Traffic & Transportation (Joint Session with ISTTT) 
 

Location: Robert H. Lurie Building, 303 East Superior, Baldwin Auditorium 
Time: 3:15 – 5:15 PM 

Session Chair: Karen Smilowitz 
  

Planning Reliable Service Facilities Under Continuous Traffic Equilibrium and Disruption Risks – Zhaodong Wang, 
Yanfeng Ouyang*  
 
Design and Control of Driverless Fleets of Electric Vehicles using Approximate Dynamic Programming – Warren 
Powell*, Andy Deng, Lina Al Kanj, Alain Kornhauser  
 
From 'No Data' to 'Some Data' to 'Big Data' Towards a Cyber-Physical System for Proactive Traffic Management – 
Pitu Mirchandani*, Kerem Demirtas, Viswanath Potluri 
 
Logistical Challenges at Mass Participation Events: Operations Research Models for Marathon Planning – Karen 
Smilowitz*, Mehmet Basdere, Sanjay Mehrotra, George Chiampas, Jennifer Chan, Mike Nishi 
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THURSDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

8:30 – 10:30 AM Session TA1:  
Air Traffic and Air Networks 

Session TA2: 
Traffic Equilibrium 

Session TA3: 
EV Charging Logistics 

Session TA4: 
Humanitarian Logistics 

 
Session Chair David Lovell Carlo Prato Halit Uster Lavanya Marla 

 
8:30 AM 

 
 
 

 
9:00 AM 

 
 
 
 
 

9:30 AM 
 
 
 
 
 

10:00 AM 

 

 
Choice-Based Airline Fleet 
Assignment – Chiwei Yan*, Cynthia 
Barnhart, Vikrant Vaze 
 
 
The Most Reliable Path Problem for 
Airline Travel with Connections – 
Michael Redmond*, Ann Campbell, 
Jan Ehmke 
 
 
Modeling Flight Delay Propagation: 
A New Analytical-Econometric 
Approach – Nabin Kafle, Bo Zou* 
 
 
 
Sources of Flight Inefficiency in the 
National Airspace System: An 
Econometric Approach – Mark 
Hansen*, Yulin Liu, Michael Ball,  
David Lovell, Cara Chuang 

 

 
Analyzing Departure Time Choice in 
a Bottleneck with Stochastic 
Service Time – Gege Jiang*, Hong 
Lo 
 
An Algorithm for Transit 
Assignment Problem with Flow-
Dependent Dwell Times – Yufeng 
Zhang*, Alireza Khani 
 
 

Statistical Inference of Probabilistic 
Origin-destination Demand Using 
Day-To-Day Traffic Data – Wei 
Ma*, Zhen Qian 
 
 
Threshold-Based Stochastic User 
Equilibrium Models – David 
Watling, Thomas Rasmussen, Otto 
Nielsen, Carlo Prato* 
 
 
 

 
Locating Refueling Points on Lines 
and Comb-Trees – Pitu 
Mirchandani, Yazhu Song* 
 
 
Modeling Electric Vehicle Charging 
Demand – Guus Berkelmans, 
Wouter Berkelmans, Nanda 
Piersma, Rob van der Mei, Elenna 
Dugundji* 
 
Electric Vehicle Routing with 
Uncertain Charging Station 
Availability & Dynamic Decision 
Making – Nicholas Kullman*, Justin 
Goodson, Jorge Mendoza 
 

Network Design for In-Motion 
Wireless Charging of Electric 
Vehicles in Urban Traffic Networks 
– Mamdouh Mubarak*, Halit Uster, 
Khaled Abdelghany, Mohammad 
Khodayar 
 

 

 
Using Drones to Minimize Latency 
in Distribution Systems – 
Mohammad Moshref-Javadi*, 
Seokcheon Lee 
 
A Novel Formulation and a Column 
Generation Technique for a Rich 
Humanitarian Logistic Problem – 
Ohad Eisenhandler, Michal Tzur* 
 
 
Humanitarian Medical Supply 
Chain in Disaster Response: Role 
and Challenges – Irina Dolinskaya*, 
Maria Besiou, Sara Guerrero-Garcia 
 
 
Cooperative Humanitarian Logistics 
Models for Highly Resource-
Constrained Settings – Lavanya 
Marla* 
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THURSDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

1:00 – 2:30 PM Session TB1: 
IP Methods in Air Traffic Control 

Session TB2: 
Pricing and Competition 

Session TB3: 
VRP Exact Methods 

Session TB4: 
Games and Collaboration 

 
Session Chair Michael Ball Song Gao Michel Gendreau Nicole Adler 

 
1:00 PM 

 
 
 
 
 
 

1:30 PM 
 
 
 
 
 
 

2:00 PM 

 

 
Optimizing the Slot Allocation on a 
Network of Airports – Paola 
Pellegrini*, Tatjana Bolić, Lorenzo 
Castelli, Raffaele Pesenti 
 
 
 
Greedy Policies for a Dynamic 
Stochastic Transportation Problem, 
and an Application to Air Traffic 
Management – Alexander Estes*, 
Michael Ball 
 
 
A Mechanism for Auctioning 
Airport Landing Slots with Explicit 
Valuation of Congestion – Michael 
Ball*, Alex Estes, Mark Hansen, 
Yulin Liu 
 

 

 
Competitive Rebalancing in One-
Way Car-Sharing – Szymon 
Albinski*, Stefan Minner 
 
 
 
 
The Costs and Benefits of 
Ridesharing: Sequential Individual 
Rationality and Sequential Fairness 
– Ragavendran Gopalakrishnan*, 
Koyel Mukherjee, Theja 
Tulabandhula 
 
Cooperative Scheme - An 
Alternative Approach to Equitable 
and Pareto-Improving System 
Optimum – Sayeeda Ayaz*, Song 
Gao, Hyoshin Park 

 

 
An Integer Programming Approach 
for the Time-Dependent Traveling 
Salesman Problem with Time 
Windows – Agustin Montero, Isabel 
Mendez-Diaz, Juan Jose Miranda 
Bront* 
 
A Mixed-Integer Linear Program for 
the Traveling Salesman Problem 
with Structured Time Windows – 
Philipp Hungerlaender, Christian 
Truden* 
 
A Branch-and-Price Algorithms for 
a Multi-Attribute Technician 
Routing and Scheduling Problem – 
Michel Gendreau*, Ines 
Mathlouthi, Jean-Yves Potvin 
 

 

 
Multi-Round Combinatorial 
Auctions for Carrier Collaboration – 
Margaretha Gansterer*, Richard 
Hartl, Martin Savelsbergh 
 
 
 
Collaborative Vehicle Routing with 
Excess Vehicle Capacity in Urban 
Last-Mile Deliveries – Joydeep 
Paul*, Niels Agatz, Remy Spliet, 
René De Koster 
 
Competition in Congested Service 
Networks: The Case of Air Traffic 
Control Provision in Europe  – 
Nicole Adler*, Eran Hanany, Stef 
Proost 
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THURSDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

2:45 – 4:15 PM Session TC1: 
Airport Operations 

Session TC2: 
Pricing Shared Mobility 

Session TC3: 
VRP Extensions 

Session TC4: 
Delivery Service Network 

 
Session Chair Senay Solak Tunay Tunca Daniele Vigo Niels Agatz 

 
2:45 PM 

 
 

 
 

3:15 PM 
 
 
 
 
 

 
3:45 PM 

 
 
 
 

 

 
Efficiency, Equity and On-Time 
Performance Objectives in Airport 
Demand Management – Alexandre 
Jacquillat*, Vikrant Vaze 
 
A Data-Splitting Algorithm for 
Flight Sequencing and Scheduling 
on Two Runways – Rakesh 
Prakash*, Jitamitra Desai 
 
 
 
Lower Cost Departures for Airlines: 
Optimal Gate and Metering Area 
Allocation Policies Under 
Departure Metering Concept – 
Heng Chen*, Senay Solak 
 

 

 
Split the Bill by Sharing the Ride-
Sharing Services: A Study on 
Optimal Ride-Sharing Pricing – 
Jagan Jacob*, Ricky Roet-Green 
 
Inventory Rebalancing and 
Minimum Stop-Over Routes for 
One-Way Electric Vehicle Sharing 
Systems – Yinglei Li*, Sung Hoon 
Chung 
 
 
An Empirical Analysis of Price 
Formation, Utilization, and Value 
Generation in Ride Sharing Services 
– Liu Ming, Tunay Tunca*, Yi Xu, 
Weiming Zhu 

 

 
Multi-Modal Variations of the 
Vehicle Routing Problem – Marc-
Antoine Coindreau, Olivier Gallay*, 
Zufferey Nicolas 
 
Multi-Commodity Two-Echelon 
Vehicle Routing Problem with Time 
Windows – Tom Van Woensel* 
 
 
 
 

The Vehicle Routing Problem with 
Private Fleet and Common Carrier 
Extension and Exact Algorithm – 
Said Dabia, David Lai, Daniele 
Vigo* 
 

 

 
An On-Demand Same-Day Delivery 
Service Using Direct Peer-to-Peer 
Transshipment Strategies – Wei 
Zhou, Jane Lin* 
 
Balancing Availability and 
Profitability in E-Fulfillment with 
Revenue Management and 
Predictive Routing – Catherine 
Cleophas*, Jan Fabian Ehmke, 
Charlotte Köhler, Magdalena Lang 
 
Heuristic Approaches to the Same-
Day Delivery Problem – Alp 
Arslan*, Niels Agatz, Rob Zuidwijk 
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THURSDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

4:30 – 6:00 PM Session TD1: 
Bus and Taxi Transport 

Session TD2: 
Optimization in Shared Mobility 

Session TD3: 
Dynamic Routing 

Session TD4: 
Service Network Design 

 
Session Chair Mark Hickman Carolina Osorio Barrett Thomas Mark Hewitt 

 
4:30 PM 

 
 

 
 

5:00 PM 
 
 
 
 
 

 
 

5:30 PM 
 
 
 
 

 

 
Choice between Metro and Taxi 
under Travel Time Variability – 
Gege Jiang*, Hong Lo 
 
 
 
Multi-Cycle Optimal Taxi Routing 
with E-Hailing – Xinlian Yu*, Song 
Gao, Hyoshin Park, Xianbiao Hu 
 
 
 
 
Machine Learning Methods to 
Predict Bus Travel Speeds and 
Analysis of the Impact of Different 
Predictive Variables – Jan Berczely, 
Ricardo Giesen* 
 

 

 
Optimizing the Profitability and 
Quality of Service in Carshare 
Systems Under Demand 
Uncertainty – Mengshi Lu*, Siqian 
Shen, Zhihao Chen 
 
Ridesharing in a Mobility-On-
Demand System – Samitha 
Samaranayake*, Harshith Guntha, 
Kevin Spieser, Emilio Frazzoli 
 
 
 
A Discrete Simulation-Based 
Optimization Algorithm for Two-
Way Car-Sharing Network Design – 
Tianli Zhou*, Carolina Osorio, Evan 
Fields 
 

 

 
Route-Based Markov Decision 
Processes for Dynamic Vehicle 
Routing Problems – Justin 
Goodson*, Marlin Ulmer, Dirk 
Mattfeld, Barrett Thomas 
 
Scalable Anticipatory Policies for 
the Dynamic and Stochastic Pickup 
and Delivery Problem – Gianpaolo 
Ghiani, Emanuele Manni*, 
Alessandro Romano 
 
 

Enough Waiting for the Cable Guy - 
Estimating Arrival Times for Service 
Vehicle Routing – Barrett Thomas*, 
Marlin Ulmer 
 

 

 
A Benders’ Decomposition 
Approach for Airline Timetable 
Development and Fleet Assignment 
– Keji Wei*, Vikrant Vaze 
 
 
Service Network Design of Bike 
Sharing Systems: Formulation and 
Solution Method – Bruno Albert 
Neumann Saavedra*, Dirk 
Mattfeld, Teodor Gabriel Crainic, 
Bernard Gendron, Michael Römer 
 
Enhanced Dynamic Discretization 
Discovery Algorithms for Service 
Network Design Problems – Mike 
Hewitt* 
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FRIDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

8:30 – 10:30 AM Session FA1:  
Transit Fare and Revenue 

Session FA2: 
Traffic Management  

Session FA3: 
Dynamic Pick Up and Delivery 

Session FA4: 
Location Routing 

 
Session Chair Hai Yang Lili Du  Martin Savelsbergh Francesco Viti 

 
8:30 AM 

 
 
 

 
 

9:00 AM 
 
 
 
 
 

 
9:30 AM 

 
 
 
 
 
 

10:00 AM 

 

 
Ticket Portfolio Planning for Urban 
and Regional Public Transport 
Networks – Jörn Schönberger* 
 
 
 
Optimal Discount Policies for 
Transit Agencies: The Case of Pass 
Programs and Loyalty Programs – 
Mehdi Nourinejad*, Amir Gandomi, 
Joseph Y. J. Chow, Matthew J. 
Rooda 
 

Pricing for a Last Mile 
Transportation System – Hai 
Wang*, Yiwei Chen 
 
 
 
 
A Fare-Reward Scheme for 
Commuters in Transit Bottleneck – 
Yili Tang*, Hai Yang 

 

 
Morning Commute Problem with 
Queue-Length-Dependent 
Bottleneck Capacity – Jin-Yong 
Chen, Rui Jiang*, Xin-Gang Li, Mao-
Bin Hu, Bin Jia 
 
Modelling User Behavior at a 
Stochastic Bottleneck – Daphne 
van Leeuwen*, Peter van de Ven 
 
 
 
 
Recasting Intersection Automation 
as a Connected-and-Automated-
Vehicle (CAV) Scheduling Problem 
within Heterogeneous Traffic 
Environment – Pengfei (Taylor) Li*, 
Xuesong Zhou 
 
Distributed Computation Based 
Constrained Model Predictive 
Control for a Mixed Flow Platoon – 
Siyuan Gong*, Lili Du 
 

 

 
Dynamic Pickup and Delivery 
Problems with Transfers – Afonso 
Sampaio, Martin Savelsbergh, 
Lucas Veelenturf*, Tom Van 
Woensel 
 
How Many Vehicles Do We Need? 
Pickup and Delivery Problem with 
Synchronized Tasks and Transfers – 
Monirehalsadat Mahmoudi*, 
Junhua Chen, Xuesong Zhou 
 
 
Order Acceptance Mechanisms for 
Same-Day Delivery – Mathias 
Klapp*, Alan Erera, Alejandro 
Toriello 
 
 
 

Optimization Algorithms for Meal 
Delivery Operations – Damian 
Reyes*, Alan Erera, Martin 
Savelsbergh 
 

 

 
Finding Optimal Park-and-Ride 
Facility Locations in an Urban 
Network – Pramesh Kumar*, 
Alireza Khani 
 
 
Reliable Facility Location Design 
with Imperfect Information: 
Continuum and Discrete Models – 
Lifen Yun, Hongqiang Fan, 
Xiaopeng Li* 
 
 
Location-Routing Problems with 
Economies of Scale – James 
Bookbinder*, Xiaoyang Pi 
 
 
 
 
Exact and Approximate Optimal 
Route Set Generation in Sensor 
Location Problems – Marco 
Rinaldi*, Francesco Viti 
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FRIDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

1:00 – 2:30 PM Session FB1: 
Transit Networks 

Session FB2: 
Network Design and Location 

Decisions 

Session FB3: 
Stochastic Routing 

 
 

Session FB4: 
Freight Transportation  

Session Chair Juan Carlos Munoz Yanfeng Ouyang Stefan Minner Ronald Askin 

 
1:00 PM 

 
 
 
 
 
 

1:30 PM 
 
 
 

 
 
 

2:00 PM 

 

 
An Internal Bounding Method for 
Line and Shuttle Bus Planning – 
Evelien van der Hurk* 
 
 
 
 
Urban Transit Network Design and 
Timetabling Problem for Multi-
Depot Round-Trip Routes – James 
Chu* 
 
 
 

The Limited-Stop Bus Service 
Design Problem with Stochastic 
Passenger Assignment – Guillermo 
Soto, Homero Larrain, Juan Carlos 
Munoz* 
 

 

 
Emission-controlled Pavement 
Management Scheduling – Umit 
Tursun*, Hasan Ozer 
 
 
 
 
Scheduling Work Zones in 
Transportation Service Networks – 
Dening Peng*, Pitu Mirchandani 
 
 
 
 
Reliable Sensor Location for Object 
Positioning and Surveillance via 
Trilateration – Kun An, Siyang Xie,  
Yanfeng Ouyang 

 

 
Vehicle Routing with Space- and 
Time-Dependent Stochastic Travel 
Times – Stein W. Wallace*, Zhaoxia 
Guo, Michal Kaut 
 
 
 
A Two-Phase Safe Vehicle Routing 
and Scheduling Problem: 
Formulations and Solution 
Algorithms – Aschkan Omidvar*, 
Eren Ozguven, Arda Vanli, 
Reza Tavakkoli-Moghaddam  
 
Optimal A-Priori Tour and 
Restocking Policies for the Vehicle 
Routing Problem with Stochastic 
Demands – Alexandre Florio, 
Richard F. Hartl, Stefan Minner* 
 

 

 
Scheduled Service Network Design 
and Revenue Management with an 
Intermodal Barge Transportation 
Illustration – Teodor Gabriel 
Crainic*, Ioana Bilegan, Yunfei 
Wang 
 
Load Commitment Policies for the 
Stochastic Advance Booking 
Problem for Truckload Trucking – 
Juliana Nascimento*, Hugo Simao, 
Warren Powell 
 
 
Logistic Network Design for Daily 
Cyclic Truck Routes – Ronald 
Askin*, Zhengyang Hu, Guiping Hu 
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FRIDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

2:45 – 4:15 PM Session FC1: 
Containers Logistics 

Session FC2: 
Traffic Flow Modeling 

Session FC3: 
Statistical Data Analytics for 

Routing and Location 
 

Session FC4: 
Movement and Inventory 
Control in Supply Chains 

 
Session Chair Patrick Jaillet Hillel Bar-Gera Bruce Golden Rajan Batta 

 
2:45 PM 

 
 

 
 
 
 

3:15 PM 
 
 
 
 

 
3:45 PM 

 
 
 
 

 

 
Balancing the Trade-Off in Route 
Choice and Demurrage Costs in 
Inland Container Logistics – 
Bernard Zweers*, Rob van der Mei, 
Sandjai Bhulai 
 
 
An Integrated Model for Inbound 
Train Split and Container Loading in 
an Intermodal Railway Terminal – 
Bruno Bruck*, Jean-François 
Cordeau, Emma Frejinger 
 

The Stochastic Container 
Relocation Problem – Virgile 
Galle*, Setareh Borjian Boroujeni, 
Vahideh Manshadi, Cynthia 
Barnhart, Patrick Jaillet 
 

 

 
The Role of Stochasticity in Traffic 
Flow Instabilities – Junfang Tian*, 
Rui Jiang, Martin Treiber 
 
 
 
 

A Kalman Filter Approach for 
Dynamic Calibration of A Simplified 
Lower-Order Car Following Model 
– Kerem Demirtas*, Pitu 
Mirchandani, Xuesong Zhou 
 

Representation Requirements for 
Perfect First-In-First-Out 
Verification in Continuous Flow 
Dynamic Models – Hillel Bar-Gera*, 
Malachy Carey 

 

 
A Novel Statistical Algorithm for 
Very Large-scale Vehicle Routing 
Problems with Time Windows – 
Mayank Baranwal, Lavanya 
Marla*, Srinivasa Salapaka, 
Carolyn Beck 
 
Facility Location and Design 
Decisions from Public Data – 
Kalyan Talluri, Muge Tekin* 
 
 
 

Addressing Uncertainty in Meter 
Reading for Utility Companies 
Using RFID Technology – Debdatta 
Sinha Roy*, Bruce Golden, Edward 
Wasil 
 

 

 
Dynamic Capacity Logistics and 
Inventory Control – Satya Malladi*, 
Alan Erera, Chelsea White III 
 
 
 
 
Planning the Fuel Supply to Gas 
Stations According to the Concept 
of Carrier-Mannaged Inventory - an 
Optimization Approach – Paweł 
Hanczar* 
 

Exploration of Strategies to Form 
Convoys to Facilitate Effective 
Movement of Items – Rajan 
Batta*, Azar Sadeghnejad 
Barkousaraie, Moises Sudit 
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FRIDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

4:30 – 6:00 PM Session FD1: 
Maritime Shipping and Fleets 

Session FD2: 
Ride Sharing and Parking  

Session FD3: 
Routing Applications 

Session FD4: 
Risk Analysis in Network 

Transportation  
 

Session Chair Stein W. Wallace Yafeng Yin  Burcu Keskin Laura Wynter 

 
4:30 PM 

 
 

 
 
 
 

5:00 PM 
 
 
 
 
 

 
 

5:30 PM 
 
 
 
 

 

 
Speed Optimization Across 
Different Emission Control Zones – 
Line Reinhardt*, Christos Kontovas 
 
 
 
 
A Column-Row-Generation 
Approach to Liner Shipping 
Network Design – Jun Xia, Zhou 
Xu* 
 
 
 
 

Planning for Charters: A Stochastic 
Maritime Fleet Composition and 
Deployment Problem – Xin Wang*, 
Kjetil Fagerholt, Stein W. Wallace 
 

 

 
Optimal Two-Sided Pricing 
Strategies of Shared E-Parking 
Platform with Elastic Demand – 
Chaoyi Shao*, Hai Yang, Fangni 
Zhang 
 
 
Integration of an Aggregated 
Dynamic Traffic Model with 
Advanced Optimization Techniques 
for Strategic Transit-Parking 
Planning – Joana Cavadas*, 
António Pais Antunes, Nikolas 
Geroliminis 
 
Parking Provision for Ride-Sourcing 
Services – Zhengtian Xu*, Yafeng 
Yin, Liteng Zha 
 
 
 

 
Heuristics and Lower Bounds for 
Robust Heterogeneous Vehicle 
Routing Problems Under Demand 
Uncertainty – Anirudh 
Subramanyam*, Panagiotis 
Repoussis, Chrysanthos Gounaris 
 
Optimal Snow Plow Routing with 
Route Continuity Constraint – 
Luning Zhang*, Jing Dong 
 
 
 
 
 

Patrol Routing with Hybrid Electric 
Vehicles – Mesut Yavuz*, Burcu 
Keskin, Huseyin Ergin 
 

 

 
Hazardous-Materials Network 
Design Problem with Behavioral 
Conditional Value-at-Risk – Liu Su*, 
Changhyun Kwon 
 
 
 
A Value-at-Risk (VaR)/Conditional 
Value-at-Risk (CVaR) Approach to 
Optimal Train Configuration and 
Routing of Hazmat Shipments – S. 
Davod Hosseini*, Manish Verma 
 
 
 
Entity Resolution and Vessel 
Modeling for Maritime Situational 
Awareness – Shiau Hong Lim*, 
Yeow Khiang Chia, Laura Wynter 
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SATURDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

9:00 – 11:00 AM Session SA1:  
Rail Transport 

Session SA2: 
Simulation-Based Analysis and 

Optimization 
 

Session SA3: 
VRP in Services 

 

Session SA4: 
Behavioral Data and Demand 

Estimation 

Session Chair Dario Pacciarelli Ronghui Liu Lei Zhao Yueyue Fan 

 
9:00 AM 

 
 
 

 
 

 
9:30 AM 

 
 
 
 

 
10:00 AM 

 
 
 
 
 

10:30 AM 

 

 
The Load Planning Problem for 
Double-Stack Trains at Intermodal 
Terminals – Serena Mantovani*, 
Gianluca Morganti, Nitish Umang, 
Teodor Gabriel Crainic, Emma 
Frejinger, Eric Larsen 
 
Tactical Block and Car Planning for 
Intermodal Trains – Gianluca 
Morganti*, Teodor Gabriel Crainic, 
Emma Frejinger, Nicoletta Ricciardi 
 
 

Optimization of Handouts for 
Rolling Stock Rotations 
Visualization – Boris Grimm*, Ralf 
Borndoerfer, Thomas Schlechte, 
Markus Reuther 
 
Real-Time Near-Optimal Train 
Scheduling and Routing in Complex 
Railway Networks – Marcella 
Samà, Andrea D'Ariano, Dario 
Pacciarelli*, Francesco Corman 
 

 

 
Traffic Management Strategies for 
Trucks in Urban Environments 
Based on a Fast Traffic Simulation 
Algorithm – Michele Simoni*, 
Christian Claudel 
 
 
Simulation Based Quantification of 
the Potential Impacts of Incidents 
on Connected Vehicle Applications 
– Abdullah Kurkcu*, Fan Zuo, 
Jingqin Gao, Kaan Ozbay 
 

An Efficient Sampling Method for 
Stochastic Simulation-based 
Transportation Optimization – 
Timothy Tay*, Carolina Osorio 
 
 
A Within-Day Microscopic 
Dynamical Model of Route Choice 
and Responsive Traffic Signal 
Control – Ronghui Liu*, Mike Smith 

 

 
Self-Sustained Car-And-Ride 
Sharing Design and Optimization 
for Improving the Mobility of 
Underserved Communities – Miao 
Yu*, Siqian Shen 
 
 
The Multi-Period Service Planning 
and Routing Problem – Albert H. 
Schrotenboer*, Evrim Ursavas, Iris 
F.A. Vis 
 
 
Covering Tour Problem with an 
Application to School Bus Routing: 
Analysis of Single Vehicle Tours on 
a Grid – Liwer Zeng*, Sunil Chopra, 
Karen Smilowitz  
 

Coordinated Delivery to 
Nanostores in Megacities – Ruidian 
Song, Lei Zhao*, Jan C. Fransoo, 
Tom Van Woensel 
 

 

 
Household Use of Autonomous 
Vehicles: Modeling Framework and 
Traveler Adaptation – Yashar 
Khayati, Jee Eun Kang*, Mark 
Karwan, Chase Murray 
 
 
Estimating Primary Demand of 
One-Way Vehicle Sharing Systems 
– Chiwei Yan*, Chong Yang Goh 
 
 
 

Modeling the Acceptability of 
Crowdsourced Goods Deliveries – 
Aymeric Punel, Alireza Ermagun, 
Amanda Stathopoulos* 
 
 
Travel Demand Estimation Using 
Heterogeneous Data Pieces: 
Addressing Stochasticity and 
Observability Issues – Yudi Yang, 
Yueyue Fan*, Roger Wets 
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SATURDAY 

Multimodal  
Transportation Services 

Traffic  
& Mobility 

Vehicle Routing Models  
& Applications 

Supply Chain Logistics  
& Methods 

11:15 – 12:45 PM Session SB1: 
Multiobjective and 

Multidimensional Logistics 
 

Session SB2: 
Traffic Data Analysis 

Session SB3: 
VRP in Health and Food Delivery 

Session SB4: 
City Logistics and Inventory 

Control 

Session Chair Fabien Lehuédé Serge Hoogendoorn Ann Campbell Teodor Gabriel Crainic 

 
11:15 AM 

 
 
 
 
 
 

11:45 AM 
 
 
 
 

 
12:15 PM 

 
 
 
 
 

 
 

 
Multi-Criteria Decision Making 
when Planning & Designing 
Sustainable Multi-Modal 
Transportation in a Corridor – 
Marie Louis*, Eric Gonzales 
 
 

Bin-Packing Problems with Load 
Balancing and Stability Constraints 
– Alessio Trivella*, David Pisinger 
 
 
 
Multi-Directional Local Search for A 
Bi-Objective Vehicle Routing 
Problem with Lexicographic 
Minimax Load Balancing – Fabien 
Lehuédé*, Olivier Péton, Fabien 
Tricoire 
 

 

 
A Data-Driven and Integrated 
Evaluation of Area-Wide Impacts of 
Double Parking Using Macroscopic 
and Microscopic Models – Jingqin 
Gao, Kaan Ozbay*, Michael 
Marsico 
 
Urban Trajectory Analytics: Day-Of-
Week Movement Pattern Mining 
Using Tensor Factorization – Jiwon 
Kim*, Kianoosh Soltani Naveh 
 
 
Opportunities for Floating Car Data 
in Integrated Traffic Management: 
The Case of Queue Estimation – 
Serge Hoogendoorn*, Erik-Sander 
Smits, Jaap Van Kooten 
 

 

 
An ALNS For a Rich Home Health 
Care Routing and Scheduling 
Problem –  Florian Grenouilleau*, 
Antoine Legrain, Nadia Lahrichi, 
Louis-Martin Rousseau 
 
 
Team Orienteering with Uncertain 
Rewards and Service Times with an 
Application to Phlebotomist Intra-
Hospital Routing – Huan Jin*, 
Barrett Thomas 
 
The Restaurant Delivery Problem – 
Marlin Ulmer*, Barrett Thomas, 
Ann Campbell, Nicholas Woyak  

 

 
Value Function Approximation-
based Dynamic Look-ahead Policies 
for Stochastic-Dynamic Inventory 
Routing in Bike Sharing Systems – 
Jan Brinkmann, Marlin Ulmer, Dirk 
Mattfeld* 
 

Synchronizing City Logistics with 
Sliding Time Windows – Saijun 
Shao*, Gangyan Xu, Ming Li, 
George Q. Huang 
 
 
Multi-Modal Scheduled Service 
Network Design for Two-Tier City 
Logistics System with Resource 
Management – Pirmin Fontaine*, 
Teodor Gabriel Crainic, Ola Jabali, 
Walter Rei 
 

 

 

TSL Cross-Region Dissertation Grant Winner  
 
Saturday, 1:00 – 1:30 PM 
Maciek Nowak 

 
Multi-objective stochastic optimization models for managing a bike sharing system – Rossana Cavagnini*, Luca 
Bertazzi, Francesca Maggioni, Mike Hewitt  
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Special Joint Session with ISTTT 
Wednesday 3:15 – 5:15 PM                Robert H. Lurie Building, 303 East Superior, Baldwin Auditorium  
Session Chair: Karen Smilowitz 

 

3:15  Planning Reliable Service Facilities Under Continuous Traffic Equilibrium and Disruption Risks  
 Zhaodong Wang, Yanfeng Ouyang* 
 University of Illinois Urbana-Champaign 
  
3:45 Design and Control of Driverless Fleets of Electric Vehicles using Approximate Dynamic Programming  
 Warren Powell*, Andy Deng, Lina Al Kanj, Alain Kornhauser 
 Princeton University 
  
4:15 From 'No Data' to 'Some Data' to 'Big Data' Towards a Cyber-Physical System for Proactive Traffic 

Management 
 Pitu Mirchandani*, Kerem Demirtas, Viswanath Potluri 
 Arizona State University 
  
4:45 Logistical Challenges at Mass Participation Events: Operations Research Models for Marathon Planning 
 1Karen Smilowitz*, 1Mehmet Basdere, 1Sanjay Mehrotra, 2George Chiampas, 1Jennifer Chan, 3Mike Nishi 
 1Northwestern University, 2Northwestern and Bank of America Chicago Marathon and Shamrock Shuffle, 

3Chicago Event Management   
  

 

  



Design and Control of Driverless Fleets of

Electric Vehicles using Approximate Dynamic Programming

Warren B. Powell, Andy Deng, Lina al-Kanj, Alain Kornhauser

Department of Operations Research and Financial Engineering
Princeton University

email: powell@princeton.edu

December 12, 2016

By year 2020 or 2021, almost every major auto company, along with fleet operators such as
Uber and Lyft, have announced plans to put driverless vehicles on the road. At the same time,
electric vehicles are quickly emerging as a next-generation technology that is cost effective, in
addition to offering the benefits of reducing the carbon footprint by allowing cars to be charged
with the most effective generators over the grid.

The combination of a centrally managed fleet of driverless vehicles, along with the operating
characteristics of electric vehicles, is creating a transformative new technology that offers significant
cost savings while still offering the same or higher levels of service. Some examples of the benefits
are: 1) lower operating costs, 2) lower capital costs due to higher utilization and equipment that
is better tuned to particular uses (e.g. smaller cars for commuting), 3) dramatic reduction in
insurance due to lower accident rates and 4) significant reduction in parking facilities.

The single biggest cost of an electric vehicle today is the battery, which has to be sized to meet
the requirements of the longest trip that a driver might make. This requirement vanishes, however,
in a fleet setting where a fleet operator can dynamically handle the recharging of a vehicle. The
fleet operator will understand the trip characteristics for each zone and can ensure that the cars
in the area are sufficiently charged to meet these needs. Customers with unexpectedly long trips
can be met by searching around the fleet for a car with a larger battery, and a sufficiently large
charge.

Currently, ride sharing operators are not concerned with a driver after a match has been made.
The situation changes when the fleet operator is responsible for the car. If the car had a driver,
then the company might be concerned with where the driver lives and how far the trip takes the
driver away from his/her home. This is the issue that has to be managed in truckload trucking,
where drivers represent an unusually complex resource (see Simao et al. (2009) for a complete
description). For an electric vehicle, the major challenge is recharging the battery. The decision of
when to recharge needs to take into consideration the nature of trips from locations close to where
the car is now, the possibility of repositioning the car to areas with a higher density of trips, and
the anticipated number of trips compared to the cars available over the day (afternoon peaks are
a real challenge).

Ultimately, a major question is the design of the fleet itself. While an individual driver owning
a vehicle has to consider the distribution of trip lengths he/she may have to make with a car, a
fleet operator simply needs to ensure that there are enough cars operating with sufficient charge
in their batteries to meet the needs at a point in time. Of course, if the batteries are too small,
cars will spend too much time moving to and from charging stations. In addition, there will be a
strong incentive to have cars that can get through a peak period without charging at all, since this
helps to determine the minimum fleet size. Even with these concerns, a fleet operator can likely
operate with much smaller batteries than would be required for a single self-owned car.

We anticipate that a fleet operator will likely want to have a distribution of battery sizes, in
addition to offering cars that hold different numbers of passengers (as Uber and Lyft already do).
However, we anticipate that the average battery size is likely to be much smaller, introducing yet
another potential source of cost savings.
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This research has the following goals:

• We propose to use approximate dynamic programming to develop high-quality operational
control strategies to determine which car (given the current charge level) is best for a par-
ticular trip (considering the length of the trip and the destination), when a car should be
recharged, and when it should be repositioned to a different zone which offers a higher density
of trips.

• We then propose to use outputs (in the form of value functions) from the operational planning
model to optimize the distribution of battery capacities in the fleet.

• We wish to determine the number of cars required to provide a high level of service, and
from this to understand the economics of a driverless fleet of electric vehicles.

Our work is going to build on two successful applications of approximate dynamic programming
for fleet management. The first and most relevant to this study is the work presented in Simao
et al. (2009) for truckload trucking, which is the application closest to this project. Both the
truckload example and the driverless fleets involve the dynamic assignment of resources (trucks,
cars) to tasks (loads, trips), where a major issue is determining which resource to assign to each
task.

One issue missing from the truckload example is empty repositioning. In Simao et al. (2009),
each decision involves assigning a driver to a load. At no time does the company simply move the
driver to a location where a load might arise, an issue that was prominent in early work (Powell
(1987), Powell et al. (1988), Cheung & Powell (1996)); see Crainic (2003) for a thorough review.
We anticipate, however, that we will need to move drivers from one location (e.g. a suburban
neighborhood) back to locations where there is a higher density of traffic. Since customers need
to be served quickly, it will not always be possible to wait until a call comes in and then move the
car. This means moving a car in anticipation of a demand that might arise.

The problem of moving transportation resources in anticipation of uncertainty demands has a
long history in the transportation literature, beginning with applications motivated by the freight
car distribution problem in railroads (Jordan & Turnquist (1983) was the earliest work to address
the problem). This early work motivated a stream of papers on the “dynamic vehicle alloca-
tion problem” (Cheung & Powell (1996), Powell & Godfrey (2002), Powell & Topaloglu (2005),
Topaloglu & Powell (2006)) which focused on dynamic programming approximations. Our work
here builds on the work of Cheung & Powell (1996) and Topaloglu & Powell (2006), but is adapted
to handle the dimension of representing the charge level in a car. For example, we need this logic
to optimize the charge process so that the fleet can get through daily peaks while minimizing the
number of cars being charged during the peak.

1 Model

We build on the modeling frameworks used in Simao et al. (2009) and Bouzaiene-Ayari et al.
(2014). There are five components to any sequential dynamic model:

State variables:
We model our resources (the cars) using

a = The attributes of a car, which include the current location, the estimated time of arrival (if

it is moving to the location), and the charge level of the battery (or estimated charge at the

arrival of the destination), with a ∈ A,

Rta = The number of cars with attribute a at time t; Rt = (Rta)a∈A.

We model the demands using

b = The attributes of a trip (origin, destination, pickup time), with b ∈ B,

Dtb = The number of trips with attribute b in the system at time t; Dt = (Dtb)b∈B.
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We model our state variable as St = (Rt, Dt).

Decision variables:
We let Dt be the different types of decisions, which are made up of the following sets:

Ds = Set of charging stations, where d ∈ Ds means “move to a particular charging station,”

Drt = Set of riders to be moved at time t, where d ∈ Drt corresponds to a trip with attribute bd,

δbtdb = 1 if d ∈ Drt corresponds to a trip with attribute b, 0 otherwise,

De = Set of locations, where d ∈ De refers to a decision to move to a location in De,
Dt = Ds ∪ Drt ∪ De.

We then capture decisions with

xtad = Number of times we act on a resource with attribute a with a decision d ∈ Dt,
xt = (xtad)a∈A,d∈Dt .

Decisions will be made according to a policy Xπ(St) which we design below. The policy has to
return a vector xt that satisfies the constraints∑

d∈Dt

xtad = Rta, a ∈ A

∑
a∈A

∑
d∈Drt

xtadδ
b
tdb ≤ Dtb, b ∈ B.

We let Xt represent the set xt that satisfies these constraints.
We capture the served customers using

Dct (xt) = {b ∈ Drb ,where xtadδ
b
tdb > 0}.

We do not require that we cover all the orders, although we anticipate that in a properly calibrated
system, a very high percentage would be covered.

Exogenous information:
The main source of exogenous information is customer orders, which we model using

D̂r
t = Set of new orders that first becomes known by time t.

We are going to initially model our exogenous process as completely independent of the system.
However, we could extend our model to one where customers look at an app to check on the
availability of cars.

We may also introduce other sources of randomness such as cars failing or travel delays due to
weather. We let Wt be our general set of exogenous information variables, including D̂t, capturing
all information that first becomes known (from an exogenous source) by time t. The sequence
W1,W2, . . . ,WT represents our exogenous information process, where ω ∈ Ω is a complete sample
sequence.

Transition function:
We begin by defining

δRaa′(d) = 1 if decision d acting on a resource with attribute a produces a resource

with attribute a′, 0 otherwise.

The resource transition function is given by

Rt+1,a′ =
∑
a∈A

∑
d∈D

xtadδ
R
aa′(d) (1)
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The updated set Drt+1 is given by

Drt+1 =
(
Drt \ Dct (xt)

)
∪ D̂r

t+1. (2)

Equations (1) and (2) make up our transition function, which we write generally as

St+1 = SM (St, xt,Wt+1).

Objective function:
We wish to maximize total revenues from served customers minus operating costs which we view
as a linear function of total distance traveled (moving customers, moving empty, and moving to
and from charging stations), which we represent using C(St, xt). The objective may also include
penalties for unserved customers. Our objective function is then

max
π

E

{
T∑
t=0

C(St, X
π(St))|S0

}
. (3)

where St+1 = SM (St, xt,Wt+1). Now we have the challenge of identifying a policy.

2 Designing a dispatch policy

There are two fundamental strategies for designing policies for sequential decision problems:

1) Policy search - Here we search over a parameterized class of policies, which may come in one
of two forms: parametric function approximations (analytical functions that map states to
actions), and policies based on parameterized cost functions (and constraints) that can be
written

XCFA(St|θ) = arg max
xt∈Xπt (θ)

C̄π(St|θ)

where C̄π(St|θ) represents a modified cost function (such as a myopic policy for assigning
the closest customer, possibly with penalties to encourage specific behaviors), subject to a
possibly modified set of constraints X πt (θ) (for example, which might capture estimates of
forecasted customers). CFAs are widely used in industry practice, and represent the class of
policy currently used by companies such as Uber and Lyft. CFAs can include deterministic
forecasts of customers that might call in.

2) Policies based on lookahead approximations - These are policies that are trying to optimize
over the contributions now and in the future. The most general form of this class of policy is

X∗t (St) = arg max
xt

(
C(St, xt) + E

{
max
π

E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St+1

}∣∣∣∣∣St, xt
})

. (4)

Equation (4) is almost never computable (a decision tree is an example where this is possible).
There are two general strategies for solving this equation. One is to replace the lookahead
model with a lookahead approximation; this is the approach taken in stochastic programming.
The other is to replace the lookahead term with a value function approximation, giving us a
policy of the form

XV FA
t (St) = arg max

x

(
C(St, x) + V t(S

x
t )
)
, (5)

While the parametric CFA describes the approach used in industry practice, we are going to use
the VFA-based policy in equation (5). We use a value function approximation that depends only
on the post-decision resource state Rxt , which captures the future destinations of vehicles after a
decision is made, but ignores uncovered demands. Thus, we use V t(S

x
t ) = V t(R

x
t ). The next

challenge is to design the functional form of V t(R
x
t ).
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Figure 1: Performance of VFA policy after n iterations with 1 car (left) and 400 cars (right).

3 Experimental testing

To estimate V t(R
x
t ), we first assign vehicles at time t, and then let v̂ta be the value of assigning

a car with attribute a at time t (this can involve assigning the car to do nothing). The logic was
tested using a sample of trips from a large database consisting of all trips made in New Jersey on a
particular day. The test was first run on a fleet with one car, and then with 400 cars. After training
for n iterations, we stopped and simulated the policy to assess its performance. The results are
shown in figure 1.

With one car, the performance generally improved, but with 400 cars, there was rapid improve-
ment followed by partial but steady degradation. We believe the reason for this behavior with
larger fleets is that the value v̂ta for a particular car was the average value, not the marginal value.
Hence, this would work fine with one car (or very small fleets), but not larger fleets.

We have since replaced the original logic of assigning each car in a greedy fashion with logic
which solves a global assignment of all cars, just as was used in Simao et al. (2009) and Bouzaiene-
Ayari et al. (2014). This logic will do a better job of allocating cars spatially. For example, we
may hold a car (or move it toward a zone with higher call-in density), rather than assign it to a
customer, and instead use a car that may be farther away, but which has fewer opportunities.

This logic lets v̂ta be the marginal value of a driver with attribute a, which is then used to
estimate a value function approximation that captures the marginal value as a function of the
amount of energy in storage. The marginal value v̂ta can be computed using dual variables or
numerical derivatives (which is more reliable but much more expensive). We will then use a layered
value function approximation where we estimate a nonlinear VFA as a function of the number of
drivers in a zone. This use of layered VFAs is similar to the strategy used in Bouzaiene-Ayari et al.
(2014).

We will report on the results of our validation of the logic for controlling the fleet through value
function approximations. We will compare different types of value function approximations, where
the challenge is capturing the marginal value of a car with a certain charge level in a zone with
a mixture of cars, each with their own charge level. We will then use the VFA that produces the
best results to test different distributions of battery sizes across the fleet. Then, we hope to also
demonstrate our ability to design the best possible distribution of battery sizes using the value
functions as a guide.
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Extended Abstract 

The objective of the research reported is to synergistically use a cyber-physical infrastructure consisting of 

smart-phone devices; cloud computing, wireless communication, and intelligent transportation systems to 

manage diverse vehicles in the complex urban network – through the use of traffic controls, and route 

guidance to jointly optimize drivers’ mobility and the sustainability goals of reducing energy usage and 

improving air quality. The system being developed, MIDAS, is to proactively manage the interacting traffic 

demand and the available transportation supply. A key element of MIDAS is the data collection and display 

device PICT that collects each participating driver’s vehicle position, forward images from the vehicle’s 

dashboard, and communication time stamps, predict traffic ahead and provide signal controls and route 

advisories to optimize given objectives. 

Given the increasing congestion in most of the urban areas, and the rising costs of constructing traffic 

control facilities and implementing highway hardware, MIDAS could revolutionize the way traffic is managed 

on the urban network since all computing is done via clouds and the drivers instantly get in-vehicle 

advisories and predicted conditions. This multidisciplinary project is at the cutting edge in several areas: 

real-time image processing, real-time traffic prediction and supply/demand management, and cloud 

computing. Historically, setting signals and ramp-metering rates at time-of-day timings, used no on-line 

data; actuated and semi actuated signals with usual detectors (loop detectors and /or video detectors) 

allowed us to use some on-line data. MIDAS takes us from some date to “big data” in that it fully exploits 

the streaming data available from smart phones and other sensors, remote and on-the-infrastructure 

sensors. 

Based on the information from the PICT devices, we obtain Lagrangian measurements (explained later) 

that allows us to predict traffic on each lane and subsequently estimate the travel time on each link and 

lane, allowing the vehicles to select lanes and routes to reach their destinations. Subsequently, based on 

these routes, the MIDAS traffic control logic proactively sets signal phases to minimize delays and/or 

queues at the intersections. These delays in turn can provide better route guidance. The iteration between 

phase durations at the intersections and route predictions/guidance simultaneously sets these decisions to 

optimize the jurisdictions traffic objectives.  

Traffic prediction 

As in most traffic management applications, real-time data collection plays a crucial role for a reliable 

and robust traffic management system, since it provides a means to partially monitor the facilities of the 



network. Inductive loop detectors, which are installed under the pavement at certain locations of the 

transportation facilities, have been the major source of data for traffic management applications since the 

1960s [KFM90]. This type of data is often referred to as Eulerian, since the data is obtained from Eulerian 

sensors that are fixed at points in space. On the other hand, mobile sensors that move with the flow of 

traffic provide another type of data often referred to as Lagrangian data, which is structurally quite different 

than Eulerian data. 

In this research, we use the Lagrangian measurements in a more effective way based on techniques 

and the ideas from Daganzo's [Dag06] and Newell's models [New02, New93a, New93b, New93c]. applied 

in a Lagrangian framework. Moreover, to the best of the authors' knowledge, there is no study yet, that 

investigates the traffic state estimation and prediction problem at a lane level resolution, which we believe 

to be important, especially relevant to new technological developments in intelligent vehicles such as 

connected and autonomous vehicles. Multiple traffic flow models that consistently apply to both microscopic 

and mesoscopic levels of traffic will be combined to have achieve high fidelity predictions at all resolutions. 

Traffic prediction and estimation algorithms are being developed that use PICT data – such 

measurements are Lagrangian since vehicles within PICT images provide information on trajectories. For 

quick traffic state prediction, mostly for dynamic travel times, a novel prediction algorithm is being 

investigated. The new algorithm takes input from existing online state estimation methods, and produce 

both macroscopic traffic state variables of interest and reliable individual travel times that are dynamically 

updated in flexible time horizons. A Kalman filter framework has been developed at the microscopic level 

resolution. The proposed algorithm can identify both interdriver and also intradriver heterogeneity in terms 

of microscopic driver behavior parameters, which collectively, have a significant effect on mesoscopic and 

even macroscopic conditions on the whole network. As opposed to aggregating the study to the links, the 

new estimation and prediction algorithm focus on individual lanes of the links, which makes the research 

contribution novel as the current practices and theory are mostly limited to the link level. 

Traffic control  

In any proactive traffic control system, the signal control algorithm is the key component in determining 

the optimal phase sequence and phase durations, by minimizing some user defined traffic performance 

measure, such as minimizing total delays, stops or queues at the intersections. Many researchers have 

worked towards developing an adaptive traffic control system in the past, of which RHODES [Mir01] is a 

better performing real time adaptive traffic control system and also has been field tested. But like any other 

existing adaptive traffic control systems, RHODES uses data from fixed loop detectors for prediction and 

estimation. On the other hand, MIDAS traffic control installed at each intersection uses Lagrangian data 

from PICT devices from all the approaches, combined with traffic estimation methods (as discussed above), 

to predict approaching vehicles’ individual arrival times, platoon movements, lane based traffic, and to 

estimate turning ratios at the intersection. As these variables get updated dynamically for a user defined 

time horizon, MIDAS traffic control algorithm feeds on the updated predictions to estimate the queues in 

each lane on all approaches of each intersection, at each decision epoch with corresponding time horizons.  

MIDAS signal control algorithm uses forward recursion Dynamic Programming (DP), to minimize the 

user defined performance measure over a finite-time horizon that rolls forward and, then uses a backward 

recursion to retrieve the optimal phase schedule. The signal control algorithm of MIDAS is similar to the 

ones in [Sen97] and [Mir01] but with an efficient data structure. MIDAS signal control algorithm determines 

the optimal signal phase sequence and duration of each phase in the sequence, by taking user defined set 

of phases (any number of phases) and time horizon as input parameters. Control algorithm runs DP at 



some time stamp ‘t’, with prescribed time horizon ‘T’ and, considering the tentatively estimated arrivals on 

all approaches of the intersection over the timeline ‘t+T’. The DP is formulated such that each “stage” of 

the DP is associated with a signal phase and number of time units allocated to all past phases before the 

current stage is defined as stage variable. The DP solution consists of the phase sequence and time units 

allocated to each phase over the next ‘T’ time units.  Fig.1 gives an illustration. At every DP run, the 

sequence of phases begins with the current phase that is green at the intersection, which allow for the 

phase to be terminated or extended based on the updated observations.  

 

 

Figure 1: Illustration of movements, phases and a DP solution on for a sequence of phases 

The underlying data structures of the algorithm are designed to hold tentative queues (vehicles waiting 

at upstream intersections) and committed arrivals (on their way to the intersection) separately and also 

capture individual vehicular information like waiting times, number of stops and other parameters so that 

the DP is able to minimize any prescribed traffic performance measure. MIDAS traffic control algorithm is 

designed to optimize any given objective for each particular intersection, and honors the constraints of each 

intersection like minimum green time, maximum green time, phase sequence restrictions, etc. 

Joint optimization of traffic control and vehicle routes  

Most traffic signal optimization (TSO) methods, whether offline or online, such as described above, 

assume link flows (or measure them in online methods) and assume turning ratios, also referred to as 

turning proportions, of the arriving flows at the intersections. Implicit traffic assumptions in most of the 

underlying optimization models is that the flows for the signal timing planning horizon are stationary and, 

thus, signal timings are determined for the given flows and turning proportions. In the combined Route 

Guidance and Traffic Signal Optimization (RGTSO) model described in this paper, the phase status of each 

traffic signal is modeled with variables describing the movement allowed at the scheduled phase. Link travel 

time times depend on the number of vehicles routed through each link as per traffic flow theory. Each 

vehicle traveling from its origin to its destination travels each link in a candidate route with travel time 

depending upon the resultant vehicle flow on the link; the waiting, if any, at the intersection, explicitly 

depends on the queues and the signal status. The space-time trajectory of each vehicle through the network 

will give its total travel time and the optimization objective value becomes the total travel times of all guided 

vehicles which can be iteratively decreased by changing guided routes and/or signal phase schedules. 

Other optimization criteria could be considered such as minimizing number of stops to improve coordination, 

minimizing average queue sizes, minimizing fuel consumption, etc.  Decomposition of the overall 

optimization problem results in two subproblems: TSO and route guidance (RG); overall optimization 

solution approach iterates between TSO and RG problems. Some previous attempts for solving jointly TSO 

and RG problems within a long-term static traffic equilibrium setting have been reported by Chen and Ben-

Akiva [Che98], Smith and Mounce [Smi11], Aziz and Ukkusuri [Azi12]. This research is among the first two 

do so for applicability for real-time optimization with time-resolution of seconds. The output of the RGTSO 

a) set of sample phases b) DP solution example 



is second-by second guidance for each vehicle on system optimal routes and concurrent second-by-second 

phase setting of traffic signals in the network. Figure 2 illustrates the underlying coupled space-time and 

phase-time networks for a 9-intersection network. Some equilibrium analysis of the solution of RGSTO for 

this network are reported by. Li et al. [Li15].  

For illustrative purposes, two 

vehicles space-phase trajectories 

are shown in the figure, solid (red) 

route and dashed (blue route). If 

the time dimension was included it 

could be that these vehicles arrive 

at Intersection 5 at the same time. 

Resolution of the conflict could be 

done either through changing 

phase times at the intersection 

and/or changing the routes to their 

respective destination. Solution of 

RGTSO would provide the 

optimum conflict-free decisions. 

Concluding Remarks 

The research team is currently 

working on the above described 

MIDAS system. It is anticipated 

that by the time of the TSL 

conference, more details and 

analysis will be reported and some 

additional results on a simulation-

based platform with more general 

real networks will be reported  

Figure 2. Space-time-phase trajectories illustration. 
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Choice-Based Airline Fleet Assignment

Chiwei Yan1, Cynthia Barnhart1, and Vikrant Vaze2

1Operations Research Center, MIT
2Thayer School of Engineering, Dartmouth College

1 Introduction

Assigning aircraft types to the flight legs in an airline’s schedule is an impor-
tant tactical decision which greatly impacts airline’s profit (Barnhart et al.
2002). Existing fleet assignment approaches effectively capture fleet availability
constraints, aircraft maintainence constraints, and network flow balance con-
straints. However, customer demand is usually modelled in a simplified way in
these existing approaches. One commonly made assumption, called the inde-
pendent demand assumption, states that each passenger has a unique itinerary
product that he/she intends to buy, and if that product is not available due
to capacity constraints or revenue management policies, then the demand is
simply lost. Such an assumption is not valid in practice because there always
exist substitution effects among similar itinerary products. A passenger who is
not able to buy his/her favorite itinerary product might choose an alternative
product instead.

Motivated by this fact, in this research, we study a new fleet assignment
model (FAM) where customer demand interactions are captured using discrete
choice models. Discrete choice models are commonly used in marketing liter-
ature to model product substitutions (McFadden 1980) and in transportation
literature to model travel demand (Ben-Akiva and Lerman 1985). Recently,
they are also being widely incorporated into airline revenue management stud-
ies (Talluri and van Ryzin 2004, Liu and van Ryzin 2008, Gallego et al. 2014).
However, there is little work in incorporating choice models into airline planning
models. Wang et al. (2014) was one of the first research studies where multi-
nomial logit (MNL) choice is incorporated into fleet assignment and schedule
design. As revealed in the paper, the downside of a straightforward combina-
tion of FAM with MNL choice is loss of tractability because of the dramatic
change to the structure of the FAM model. This issue is further exacerbated
with other advanced choice models. From our own experience, for a problem
instance from a major US airline, the straightforward model directly combining
FAM and MNL choice does not produce even a feasible solution in 30 hours
of computation time with a state-of-the-art commercial solver. This computa-
tional burden is the major obstacle which prevents choice-based FAM (CFAM)
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from being applied in the airline industry. Faced by this difficulty, our research
makes the following contributions to CFAM:

1. We develop a reformulation, decomposition and approximation scheme for
CFAM. The approximation scheme has the capability to specify the degree
of balance between computational efficiency and solution quality.

2. The developed approach naturally separates the revenue calculation and
fleet assignment into a two-step process so that varying the choice model
assumptions will not change the structure of the fleet assignment problem.
This enables our approach to incorporate more advanced choice models,
such as mixed MNL, ranking-based model (Farias et al. 2013), etc., with-
out a dramatic increase in computational time.

In summary, the proposed approach provides a practically efficient frame-
work to incorporate customer choice into fleet assignment models. With more
accurate customer demand modeling, higher profit is expected under this ap-
proach. This is confirmed by our preliminary computational experiments show-
ing superior profits as well as faster computational performance. It should also
be noted that the proposed framework can be extended to other airline planning
models where customer demand plays a key role, such as the schedule design
problems.

2 Methodology

We utilize an existing reformulation called subnetwork-based FAM (Barnhart
et al. 2009) to address choice-based FAM. The subnetwork-based FAM (SFAM)
is an approximation scheme originally developed for solving itinerary-based
FAM (Barnhart et al. 2002) efficiently. The key idea of SFAM is to utilize
composite variables to model fleet assignment decisions. In a standard FAM,
binary variables xl,f are defined to equal 1 if fleet type f is assigned to flight
l, and 0 otherwise. In SFAM, flights are first partitioned into different subnet-
works. For each subnetwork k, we enumerate all possible fleet assignments for
all the flights in it. We then use a binary variable wk

j which equals 1 if fleet
assignment j is chosen for subnetwork k, and 0 otherwise. The following table
shows an example of a subnetwork consisting of two flight legs (l1 and l2) and
all possible fleet assignments with two fleet types (A and B). As can be seen
from the table, there are four possible assignments for this subnetwork, and the
assignment variable wk

j here indicates whether a particular one is adopted.

Flight Assign. 1 Assign. 2 Assign. 3 Assign. 4
l1 A A B B
l2 A B A B

Table 1: Illustration of fleet assignment of a subnetwork
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With this new definition of the fleet assignment variables, SFAM represents
a change-of-variable approach relative to the standard FAM formulation. As
pointed out in Barnhart et al. (2009), this Dantzig-Wolfe like reformulation
in SFAM enjoys better computational efficiency because of the tightened LP
relaxation bound. The advantage of using SFAM under passenger choice be-
havior models is that it can naturally separate the fleet assignment and revenue
calculations into a two-step process where the revenue associated with each pos-
sible fleet assignment can be calculated offline so that the structure of FAM is
independent of the assumptions made by the choice models.

On the other hand, the key challenge of SFAM is that the required number of
assignment variables grows exponentially with the size of the subnetwork. Thus
the size of the subnetwork determines the key trade-off between computational
efficiency and solution quality, where coarser partition and larger subnetwork
size will lead to greater solution quality but higher computational requirements,
and vice versa. Barnhart et al. (2009) developed heuristic approaches to find
good subnetwork partitions. After the subnetwork is fixed, if there is a fare
product shared by multiple subnetworks, Barnhart et al. (2009) divide the price
of that fare product across subnetworks with some relatively non-sophisticated
methods. However, since the original SFAM assumes independent demand, the
approximation scheme in Barnhart et al. (2009) is not tight enough for CFAM.
Thus, we develop a novel linear program for splitting the fare of these cross-
subnetwork products to find an optimal fare structure for each subnetwork to
further enhance its approximation quality.

3 Computational Experiments

We conduct preliminary computational experiments using two airline networks.
The descriptive information on these two networks is provided in Table 1:

Network Number of Flights Number of Fare Products Schedule Repeatition

1 184 10000 Daily

2 1400 100000 Weekly

Table 2: Two testing networks

For each network, we assume there is a ground-truth MNL model which
governs the customer demand. We then solve CFAM (Wang et al. 2014), IFAM
(Barnhart et al. 2002) and our proposed choice-based SFAM for these two net-
works. For IFAM, we use the first-choice demand from the MNL choice model
as the unconstrained demand for each product. For each of the fleeting solutions
coming out of these models, we run a choice-based linear program for network
revenue management under the ground-truth MNL choice model (Gallego et al.
2014) to evaluate the profit. We summarize the test results in Tables 2 and 3.

In summary, we find that for the small network instance (network 1), the
proposed choice-based SFAM approach is able to produce near-optimal solu-
tions with significantly shorter computation time; and for the large network
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Model Daily Profit Annual profit improvement over IFAM CPU Time

IFAM $922,400 - 60 sec

CFAM $936,800 5.25 million 7200 sec

SFAM $936,790 5.25 million 900 sec

Table 3: Testing results of network 1

Model Weekly Profit Annual profit improvement over IFAM CPU Time

IFAM $10,816,837 - 5 hr

CFAM No Solution - 30 hr

SFAM $10,850,641 1.76 million 5 hr

Table 4: Testing results of network 2

instance (network 2), it is able to produce good solutions within reasonable
computational budget.

4 On-going Work

We are currently extending and testing the choice-based SFAM approach under
advanced choice models including mixed multinomial logit and ranking-based
choice models. Our ultimate goal is to evaluate this approach under a data-
driven setting: given customer shopping and transaction data, we first estimate
various types of choice models; we then benchmark the fleeting solution from
our SFAM approach using different choice models to quantify: 1) how much
profit we can gain by using a more advanced and accurate demand model; 2)
what is the associated increase in computational requirement; and 3) how much
better our profits are compared with less sophisticated approaches. This holistic
approach will move forward the state-of-the-art for airline fleet assignment under
customer choice behaviors and provide a practical planning tool for airlines to
build effective fleeting decisions directly from transaction and shopping data.
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1 Introduction

Travel between many cities can require multiple legs, such as several trains,
bus rides, or flights, to arrive at the final destination. When there are many
different combinations available to travel from origin to destination (journeys),
travelers are often presented with different options that minimize price, total
travel time, or a combination of these two. In choosing between options for such
multiple leg journeys, customers would like to avoid a journey that will likely
lead to missed connections or arriving late to their destination. As Börjesson
and Eliasson (2011) point out, simply knowing the average delay or the on-
time arrival probability for individual legs will not give a complete picture of a
journey’s reliability. However, the reliability of the journey is not often available
when making this a priori decision.

Since variability in travel times can create delays and missed connections
that greatly affect travelers’ probability of arriving on-time to their destina-
tions, identifying and presenting reliable paths is also important. Identifying
the most reliable path utilizing travel time data is not simple, and new tech-
niques are required to do this efficiently. We propose an approach to evaluate
the reliability of a journey from origin to destination given a start time and
travel time budget. Specifically, we focus on airline travel and making a priori
evaluations of reliability for different journeys. Airline travel is unique in that
the network inherently exhibits a high amount of uncertainty with over 20% of
flights experiencing delays or cancellations in 2015 (USDoT, 2016). We present
our model of reliability in Section 2, explore publicly available flight data in
Section 3, and discuss techniques of finding the most reliable path in Section 4.

2 Reliability Model

In this section, we define the reliability of a multi-leg journey and discuss how
to compute the reliability measure.

1



2.1 Problem Definition

We aim to identify the reliability of different multi-leg journeys from an origin
to a destination. We define reliability based on

• λod: specific journey from origin to destination where λ represents a se-
quence of legs that make up that journey,

• start time: the time the passenger is able to begin his or her journey, and

• B: the travel time budget for reaching the destination. The latest arrival
time at the destination will be start time+B.

The reliability of a particular sequence λod will be expressed by
rel(λod, start time,B) and represents the probability that this sequence will
lead to an arrival at the destination by start time + B. For simplicity of pre-
sentation, we will define the sequence λ as {leg 1, leg 2, ... leg m}, where m is
the number of legs in the given journey. For each leg i in a journey, we assume
we know the following:

• sched di: the time leg i is scheduled to depart

• min duri: the minimum travel time of leg i

• sched ai: the time leg i is scheduled to arrive at its destination.

Connecting two legs requires a feasible transfer. Feasibility of connections be-
tween legs is tied to a constant value min c, the minimum time necessary to
transfer from one leg to the next, such as the time to walk between terminals in
an airport. We assume that if an arrival allows min c time to occur before the
next departure, the connection will be made. We assume each sequence under
consideration (λ) is feasible with regard to yielding a path from an origin to the
destination and planned transfer times between legs (e.g. for leg 2, it must be
true that sched a1 +min c ≤ sched d2).

We define the most reliable path problem as the problem to identify the
sequence λ that maximizes rel(λod, start time,B) for a given start time and
budget B.

2.2 Computation of Reliability

Computing the reliability measure is challenging, since the reliability of the
multi-leg journey depends on the probability of all connections being made as
well as the arrival time of the last leg in the sequence. In our model, we will
assume that the travel time of each leg is independent. We also assume that legs
do not wait for late arriving passengers, and no leg i departs before sched di.
The probability information for each leg i can be expressed by

• P (Di = t): probability that departure of leg i occurs at time t,

• P (Ai = t): probability that arrival to end of leg i occurs at time t.

2



We can precompute these values using operational flight data from the United
States Bureau of Transportation Statistics’ (USBTS) historical database at
http://www.transtats.bts.gov. Next, we will discuss how we use this data to
compute rel(λod, start time,B), for example. We start with the simplest case
of one leg and show how to extend this to consider multi-leg journeys with
connections.

2.2.1 One Leg

A sequence with only one leg (e.g. λod = {leg1}) makes it to its destination by
time start time+B with the following probability:

P (Ai ≤ start time+B) =
start time+B∑

t=sched di+min duri

P (Ai = t) (1)

Thus, rel(λod, start time,B) = P (Ai ≤ start time+B).

2.2.2 Two or More Legs

With two or more legs, we must compute the likelihood that each connection
in the sequence is made as well as the arrival to the final destination occurs
by start time+B. We assume a passenger cannot arrive to the destination by
start time+B unless they make all of the connections. In terms of probability,
PC1,2 = P (C1,2) will represent the probability the first connection is made,
and PC2,3 = P (C2,3 | C1,2) is the probability the second connection is made
given the first connection is made, etc. Last, P (Am ≤ start time + B | C1,2 ∩
. . . Cm−1,m) will represent the probability that the arrival to the destination
occurs within the travel time budget given all of the prior connections are made.
Then, our final calculation of reliability becomes

rel(λo,d, start time,B) = P (Am ≤ start time+B | C1,2 ∩ . . . Cm−1,m) (2)

×
∏
i,j

PCi,j : i = 1, ..m− 1, j = i+ 1.

3 Data Exploration

Based on historical flight data, we explore the evolution of reliability measures
for varying start times and travel time budgets for various origins and destina-
tions. Figure 1 represents an example of how varying time budgets impact the
reliability for the origin-destination pair Minneapolis – Dallas Fort Worth for
different start times. The figure shows the average reliability rating of journeys
departing in a particular hour of day. Note that it is based on information only
from journeys that require at least one transfer. We can see that larger time
budgets allow for better reliability ratings, since larger time budgets allow for
longer layovers. Long layovers can offset delays that may interrupt connections.

3



4 Solution Approach

We are investigating several approaches that consider the above reliability mea-
sure in the computation of the most reliable path. We begin the network
search by creating a simplified flight network containing a restricted set of arcs
based on the value of start time, adapting a concept from Delling et al. (2009)
that helps us to keep the size of the network small (Phase I). In Phase I, a
path begins at the terminal node of the origin airport Ao and proceeds to the
departure node of Airport Ao. From there, all possible arcs from the departure
node of Ao to each feasible airport arrival node are limited to the next available
flight if a direct connection exists. The earlier and later flights between airports
will be ignored. With the simplified flight network, we can use a variant of
Dijkstra’s algorithm to find a feasible path and compute the reliability of that
shortest path, namely the initial incumbent most reliable path (MRP ). Since
Phase I does not consider the entire flight network, more reliable journeys may
be overlooked.

In Phase II, we are expanding the network search to include all scheduled
flights that occur throughout a day. Unfortunately, this expansion results in
an exponential number of potential journeys between a particular origin and
destination. Improvements we have been investigating:

• A travel time based lower bound in order to prevent the algorithm from
considering nodes far from the destination.

• A reliability lower bound to prevent adding legs that will cause the re-
liability of a partial journey to be less than the reliability of an already
discovered complete journey. Partial journeys are not added to the pri-
ority queue if they are not as reliable as this previously found complete
journey.

• Implementing a k-shortest path algorithm, the highest reliability among
these k shortest paths can be used as a lower bound on our reliability
measure.

4



The acceleration techniques and k-shortest path algorithms allow us to expe-
dite the network search. We will continue to improve the algorithm and metric
to provide the traveler a sense of reliability in a network of uncertainty.

The following table highlights exemplary origin-destination pairs that both
the Phase I and Phase II algorithms were able to navigate in order to find the
most reliable paths. In addition to the start time and travel budget, the runtime
of the algorithm is also displayed. Max Rel I represents the highest reliability
found during Phase I, and Max Rel II likewise represents the reliability measure
for the MRP in the expanded network.

Origin Dest Start time Budget MaxRel I Time MaxRel II Time

Cedar Rapids Nashville
CID BNA 5:00 AM 6 hours 89.9% 1.3 s 89.9% 1.0 s
CID BNA 5:00 AM 8 hours 91.3% 10.9 s 95.3% 10.3 s
CID BNA 5:00 AM 10 hours 93.6% 30.1 s 96.2% 30.0 s
CID BNA 1:00 PM 6 hours 86.4% 0.9 s 86.4% 1.7 s
CID BNA 1:00 PM 8 hours 90.2% 1.8 s 90.6% 7.6 s
CID BNA 1:00 PM 10 hours 96.8% 6.1 s 96.8% 19.3 s

Friedman,ID Miami
SUN MIA 5:00 AM 10 hours 66.4% 1.1 s 66.4% 4.0 s
SUN MIA 5:00 AM 13 hours 78.6% 26.5 s 79.8% 77.0 s
SUN MIA 5:00 AM 16 hours 83.0% 76.0 s 83.8% 201.0 s

Des Moines San Diego
DSM SAN 5:00 AM 9 hours 93.1% 2.5 s 93.1% 4.7 s
DSM SAN 8:00 AM 9 hours 76.8% 4.0 s 95.2% 8.7 s
DSM SAN 11:00 AM 9 hours 96.9% 2.7 s 98.2% 6.9 s
DSM SAN 2:00 PM 9 hours 97.1% 1.3 s 97.1% 3.7 s

Bangor, ME Hilo, HI
BGR ITO 5:00 AM 24 hours 88.2% 66.0 s N/A N/A

On the trip from Cedar Rapids to Nashville, we can see the trends that we
witnessed in the data exploration regarding the impact of increasing the travel
budget. Likewise, this decrease in the reliability of the most reliable path is seen
with small travel budgets. The 8:00 AM start time from Des Moines to San
Diego demonstrates the value that expanding the network can have on finding
the most reliable path. With the restricted network, the most reliable path was
only able to arrive within the budget 77% of the time, but the expanded network
found a journey that was 95% reliable. Finally, the long journey from Maine
to Hawaii shows that the Phase I algorithm is able to find a reliable journey of
88%, but the Phase II algorithm requires more than the time allowed. This is
the springboard for our future research.
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ABSTRACT 
We investigate causes of en route flight inefficiency for US domestic flights into and out of 34 
major US airports, using a dataset of several million flights from the years 2013 and 2014. 
Following earlier work, our inefficiency metrics compare the distance flown between airport 
terminal exit and entry points with the achieved distance, and further isolate the effects of pre-
specified, and often not ideal, entry and exit points (TMA) and excess distance flown between 
these points (DIR). We find the TMA inefficiency decreases with flight distance, while DIR 
inefficiency is roughly constant with distance. Inefficiency varies considerably for flights between 
a given airport-pair, with median values generally less than 5%. To assess causes of inefficiency, 
we employ two different methodologies, both of which are based on clustering individual 
trajectories and identifying nominal trajectories within each cluster. In the first approach, the 
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nominal trajectories are used to compute aggregate metrics related to different causal factors, for 
example exposure to convective weather. These metrics are then used as explanators in regression 
models in which inefficiency metrics are the dependent variables. In the second approach, we 
model the cluster to which a given trajectory belongs based on characteristics of nominal routes 
and then estimate regression models which take into account the trajectory cluster as well as 
metrics related to the various causal factors. Results for inefficiency causes including convective 
weather, winds, and TMI actions are presented. 
 
 
Keywords: Flight Performance, En route inefficiency, Fixed effects model 
  



Hansen et al  3 
 
1. INTRODUCTION 
Recent years have witnessed growing interest in comparative performance assessment of air navigation 
service providers. Such efforts face difficult challenges, in particular the need to identify key performance 
indicators (KPIs) that are precisely defined, can be assessed using data available to all providers, and which 
capture the major dimensions of aviation system performance. The potential payoffs from comparative 
performance assessment more than justify such work, however. These include identifying opportunities for 
performance improvement, determining the benefits from modernization, and more fundamentally 
understanding the linkages between structure and performance in the air navigation service domain. 

Comparative assessments typically emphasize macro comparisons. For example, the most recent 
comparison of US and European air navigation system performance (1) emphasizes conclusions such as 
“Europe continues to demonstrate less additional time in the taxi-out phase than in the US” and “the US 
continues to show a lower level of inefficiency in the airborne phase of flight.” From the standpoint of 
senior decision makers, such high-level conclusions represent the ultimate payoff from vast amounts of 
data collection and analysis. To researchers and scholars, however, they beg more detailed questions. Are 
taxi-out times in the US high everywhere or are the results skewed by a few highly congested airports? 
Similarly, is airborne inefficiency fairly constant across space and time, or are there pronounced patterns of 
variation and, if so, what are they? Most importantly, what are the more important causes of flight 
inefficiency, and how can their contributions be quantified? Answers to such questions, in addition to 
satisfying basic curiosity, may be equally or more relevant to the practical project of improving system 
performance than the macro comparisons. For example, it may be far easier to import best practices from 
one region of a single air navigation system to another than to do so across systems. 
 

2. LITERATURE REVIEW 
The en route phase of a flight is defined as the portion between a 40 nautical-mile circular boundary around 
the departure airport (D40) and a 100 nautical-mile circular boundary around the arrival airport (A100). 
This definition is intended to exclude the portions of the flight path that are strongly influenced by terminal 
operations. Horizontal en route inefficiency, which evaluates actual flight trajectories against a benchmark 
trajectory, has received considerable attention in the open literature. Ref. [1] calculates the horizontal 
inefficiency based on the extra distance flown in the en route phase with respect to an ideal distance known 
as “achieved distance”, which represents the average of how much further the flight has gotten from the 
origin and how much closer it has gotten to the destination over the en route portion of the flight (2) - (3). 
This method, instead of choosing great circle distance between OD airport as the benchmark, excludes the 
effect of terminal inefficiency. Equation (1) explicitly expresses the definition, where 𝐻𝐻𝐻𝐻𝐻𝐻 is the horizontal 
inefficiency of a flight, 𝐴𝐴 is the actual flown distance, and 𝐻𝐻 is the achieved distance.  
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐴𝐴−𝐻𝐻

𝐻𝐻
        (1) 

 
The overall en route inefficiency can be further decomposed into two parts: direct route (DIR) 

extension inefficiency and terminal (TMA) extension inefficiency. While the first component is primarily 
driven by the efficiency of the path between the actual terminal area entry and exit points, the TMA 
extension inefficiency reflects the inefficiency that derives from the location of these points, which are 
usually not on the great circle route between the origin and destination. The decomposition can be written 
as: 
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐴𝐴−𝐷𝐷

𝐻𝐻
+ 𝐷𝐷−𝐻𝐻

𝐻𝐻
      (2) 

 
Where 𝐷𝐷𝐷𝐷𝐷𝐷 is the direct route extension inefficiency, 𝑇𝑇𝑇𝑇𝑇𝑇 is the terminal extension inefficiency, and 𝐷𝐷 is 
the great circle distance from the exit point to the entry point. 

Based on this methodology, the US-Europe Performance Report (1) compares en route 
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inefficiency in the US and Europe. Both US and Europe have been on a downward trend for en route 
inefficiency, but US in general in general is more efficient than Europe – in 2013, the flight inefficiency 
calculated from equation (2) is 2.7% for the US and 2.9% for Europe. The report documents certain patterns 
both for US and Europe. It suggests that flights to New York and Florida area are systematically more 
inefficient, mostly due to the avoidance of special use airspace (SUA) and long transcontinental operations. 
In Europe, the implementation of free route airspace (FRA) improves the en route efficiency significantly, 
especially for flights through those areas. 

However, one major criticism of the metric is the selection of the “achieved distance” as the 
benchmark distance. Although it takes into account the deviation between exit/entry points with a direct 
route from origin to the destination, it is not an “optimum” trajectory distance for most flight operations, 
when considering meteorological conditions. Calvo et al. (4) propose the fuel efficiency as the metric to 
evaluate flight efficiency. Instead of using absolute distance, they calculate the inefficiency based on the 
additional fuel burn of the actual trajectory over the great circle trajectory between the exit and entry points. 
Although this metric performs quite differently from the route extension metric for some flights, these two 
are highly correlated most of the time. Therefore, route extension metric, while not perfect, has the virtue 
of simplicity and appears to correlate well with more refined metrics. 

3. METHODOLOGY  
Our aim is to investigate variation in the en route inefficiency metric for US flights. We focus on factors 
related to origin and destination airports, season, and flight distance. We apply linear regression techniques 
to explore and quantify factors that potentially impact flight horizontal en-route inefficiency. We are more 
interested in broad patterns than the specific circumstances that affect the inefficiency of individual flights.  

3.1 Descriptive Data Analysis 
We obtained the flight level performance data from the Enhanced Traffic Management System (ETMS) of 
FAA. The data cover around twelve million flights arriving at U.S. 34 core airports (Appendix A) from 
January 1st, 2013 to December 31st, 2014, in which 87% of total records are domestic flights and less 1% 
are diverted flights or missing records. Each record includes the origin/destination airports and 
departure/arrival time of a flight. Distance information driven by radar tracking data, such as actual flown 
distance, flight plan distance, great circle distance and achieved distance, is provided as well. 

We limit our scope to flights that into and from the US 34 core airports, which represents most of 
US IFR flights (1). After removing all international or diverted flights, we obtained our final dataset with 
six million records, which encompasses about 50% of total traffic in the ETMS database. Based on the data, 
we first apply Equation (1) to calculate the en route inefficiency for each flight, then we compare 
inefficiencies from the perspective of flight length, airport pair and season. 

Figure 1 shows the average horizontal en route inefficiency for flights within each flight length 
category. There is no significant difference in inefficiency across all flight length groups between year 2013 
and 2014. The average inefficiency across all flights is 3.413% for 2013, which is only 0.006% higher than 
2014. Figure 1 shows that long-haul flights tend to be more efficient than short-haul flights, and that this is 
primarily the result of decreasing TMA extension inefficiency with distance. This suggests that excess 
distance from inefficient placement of entry and exit points is independent of great circle distance. On the 
other hand, DIR inefficiency is roughly independent of great circle distance, implying that the excess 
distance between entry and exit points compared to the great circle distance is roughly proportional to the 
great circle distance. 

We calculate the monthly average horizontal inefficiencies for four representative routes, ATL – 
JFK, ATL – EWR, MSP – LAX and MSP – MIA, in 2013 to further investigate how terminals and seasons 
affect flight en route inefficiency. Boxplots of inefficiencies across months for those pairs are shown in 
Figure 2 and Figure 3. All of the plots reveal that inefficiency is skewed to the right. The skew is most 
pronounced for city pairs that are relatively efficient, because the left tail is bounded by zero. 
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Figure 1 Summary of horizontal en route inefficiency 

 
Figure 2 Horizontal inefficiency for representative airport pairs 

Figure 2 illustrates the case for flights from ATL to JFK and from ATL to EWR. The average 
inefficiency across the whole year is 7.82% for flights to JFK, and is 2.95% for flights to EWR. Meanwhile, 
flights to JFK demonstrates higher variations than EWR. Since both pairs have the same origin airport and 
similar route structure, terminal congestion is likely to be a significant factor contributing to en route 
inefficiency. A possible explanation is that flights to JFK must circumvent traffic into the rest of the New 
York metroplex, while EWR, since it is on the southern edge of the region, is more accessible from the 
south. The second group of routes, shown in Figure 3, which have similar flight length, reveals the impact 
of season. Both figures indicate that flights from May to August are more inefficient than the other months, 
especially for flights from MSP to MIA. This suggests that convective weather, which is more frequent 
during summer season and along the south coast, increases the overall flight en route inefficiency. 
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Figure 3 Horizontal inefficiency for representative airport pairs 

3.2 Causal Analysis of Flight Inefficiency 
 
To quantify the contributions of different causal factors to flight inefficiency, we employ two different 
approached, both of which are based on the concept of nominal routes. Nominal routes for a given airport 
origin and destination are identified first by clustering trajectories using dimension reduction and the 
DBSCAN algorithm, and then solving the 1-median problem to find a representative trajectory for each 
cluster. We term these representative trajectories as nominal routes. An example for one origin-destination 
pair, Houston Intercontinental to Boston Logan, appears in Figure 4. It considerable variation in the 
inefficiency for the different clusters, from less than 2% to nearly 9%, and that three clusters, colored red, 
green, and purple, account for the vast majority of flights. 
 

 
Figure 4 Example of Trajectory Clusters and Nominal Routes 

 
Using the nominal routes, we employed two different methodologies for assessing contribution of different 
causal factors to en route inefficiency. For purposes of illustration, we will present these methodologies in 
the context of two causal factors—convective weather and rain. The first method, termed the composite 
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approach, is shown in Figure 5. In this approach, the nominal routes are used as a basis for characterizing 
weather exposure for a given flight based on its departure time, which, along with other relevant factors 
such as whether a flight takes place during a busy hour of the day, is used as an independent variable in a 
regression model for the en route inefficiency of the flight. (Note that the composite measure is used instead 
of a flight-specific factor because the flight may have taken a longer trajectory to avoid the weather.) 
 

 
Figure 5 Composite Method  

 
In the other approach, shown in Figure 6, route selection is explicitly modeled, using multinominal logit. 
The inefficiency impact is weather is depicted as a two-stage process, where the first stage is related to the 
cluster that is chosen for a given flight and the second stage models flight inefficiency in a manner that 
takes the cluster into account. 
 

 
Figure 6 Route-Specific Method  
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For either approach, the final step is to use the estimated models to predict what inefficiency would be if 
there were no convective weather or rain present. The difference in inefficiency between the scenarios with 
the observed weather and the no weather is the contribution of weather to en route inefficiency. 
 
 
4. RESULTS 

Results of the analysis for several representative origin-destination pairs appear in Table 1. The composite 
method yields higher estimated of the weather contribution to en route inefficiency, which range from 14 
to 27% of total inefficiency, with an average of about 20%. The route-specific method yields contributions 
between 6 and 16%, with an average of 9%. Efforts to understand these differences and if possible reconcile 
the divergent estimates are ongoing. 
 

  
 
5. CONCLUSIONS 

In this research, we present a method for quantifying to contribution of different causal factors to en route 
flight inefficiency, use weather factors as an example. Two different approaches, both based on 
characterizing the weather factors on nominal routes identifies using clustering of individual trajectories, 
are presented and compared. The results of the two approaches are somewhat different, but generally 
suggest that weather accounts for about 10-20% of en route inefficiency in the origin-destination pairs 
investigated to date. Put another way, flights fly in these pairs fly an excess ground distance of about 3.1% 
compared to a perfectly efficient great circle route; without adverse weather this would become 2.6 or 2.9% 
depending on the method used to estimate it. 

In addition to refining these methods in order to get closer agreement between them, future research should 
focus on other causal factors. For example, traffic management actions such as increase mandatory spacing 
between aircraft to meter demand, are expected to increase en route inefficiency. Also, the effects of winds 
are important: flights may use a trajectory with a longer ground distance because it has more favorable 
winds. Ultimately, this research will lead to an understanding of the causal factors leading en route 
inefficiency comparable to our understanding of the causes of flight delay, which is currently significantly 
greater. 
 
 



Hansen et al  9 
 
REFERENCES 
1. Performance Review Commission and FAA-ATO, 2013 Comparison of Air Traffic 

Management-Related Operational Performance: U.S./Europe. European Commission, U.S. 
Department of Transportation, 2014. 

2. EUROCONTROL, Horizontal flight efficiency, achieved distances. Technical report, 
EUROCONTROL, 2013. 
https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/news-
related/2013-05-08-slides-workshop-achieved-distance.pdf. Accessed November 9, 2016. 

3. Fuller I, Hustache JC, Kettunen T. Enhanced Flight Efficiency Indicators. Eurocontrol 
Experimental Centre, EEC/SEE/2004/011. 2004. 

4. Calvo, E., Cordero, J. M., D’Alto, L., López-Leonés, J., Vilaplana, M., & La Civita, M. A 
New Method to Validate the Route Extension Metric against Fuel Efficiency. In Eleventh 
USA/Europe Air Traffic Management Research and Development Seminar (ATM2015), 
Lisbon, Portugal, 2015 

5. Sridhar, B., Chen, N.Y., Hok, K.N., Rodionova, O., Delahaye, D. and Linke, F. Strategic 
Planning of Efficient Oceanic Flights. In Eleventh USA/Europe Air Traffic Management 
Research and Development Seminar (ATM2015), Lisbon, Portugal, 2015 

6. McNally, D., Sheth, K., Gong, C., Sahlman, S., Hinton, S., Lee, C., Sterenchuk, M. and Shih, 
F.T. Dynamic Weather Routes: Two Years of Operational Testing at American Airlines. 
In Eleventh USA/Europe Air Traffic Management Research and Development Seminar 
(ATM2015), Lisbon, Portugal, 2015 

7. Meyers, T.A., Klopfenstein, M., Mintzer, J., Wilmouth, G. and Sud, V. A Preliminary 
Analysis of the Impact of Miles-in-Trail Restrictions on NAS Flight Operations. In Sixth 
USA/Europe Air Traffic Management Research and Development Seminar (ATM2005), 
Baltimore, MD, 2005 

8. Ostwald, P., Topiwala, T. and DeArmon, J. The Miles-in-Trail Impact Assessment 
Capability. In AIAA Aviation Technology, Integration and Operations Conference (ATIO), 
Wichita, KS, 2006. 

9. Sheth, K., Gutierrez-Nolasco, S., and Petersen, J., Analysis and Modeling of Miles-in-Trail 
Restrictions in the National Airspace System, In AIAA Aviation Technology, Integration and 
Operations Conference (ATIO), Los Angeles, CA, 2013.  

https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/news-related/2013-05-08-slides-workshop-achieved-distance.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/news-related/2013-05-08-slides-workshop-achieved-distance.pdf


INFORMS TSL 
First Triennial Conference  July 26-29, 2017 Chicago, Illinois, USA 

21 | P a g e  
 

Multimodal Transportation Services  
TB1: IP Methods in Air Traffic Control 
Thursday 1:00 – 2:30 PM           
Session Chair: Michael Ball 

 

1:00  Optimizing the Slot Allocation on a Network of Airports 
 1Paola Pellegrini*, 2Tatjana Bolić, 2Lorenzo Castelli, 3Raffaele Pesenti 
 1IFSTTAR, 2Università degli Studi di Trieste, 3Università Ca' Foscari di Venezia 
  
1:30 Greedy Policies for a Dynamic Stochastic Transportation Problem, and an Application to Air Traffic 

Management 
 Alexander Estes*, Michael Ball 
 University of Maryland 
  
2:00 A Mechanism for Auctioning Airport Landing Slots with Explicit Valuation of Congestion 
 1Michael Ball*, 1Alex Estes, 2Mark Hansen, 2Yulin Liu 
 1University of Maryland, 2University of California-Berkeley 
  

  



Optimizing the slot allocation on a network of
airports
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3 Dipartimento di Mangement, Università Ca’ Foscari di Venezia, Venezia, Italy

pesenti@unive.it

1 Introduction
Demand for air transportation continues to increase, and airports often become bottle-
necks due to their lack of capacity. Nowadays, most of the congested airports are classi-
fied as either Level 2 or Level 3 (IATA, 2015), at which the use of airport facilities must
be coordinated by a facilitator or a coordinator, respectively. At Level 3 airports, the
coordinators may impose schedule displacements (Pyrgiotis and Odoni, 2014) on the
users’ requests and manage the capacity through the so called slots, i.e., “permissions
given for a planned operation to use the full range of airport infrastructure necessary
to arrive or depart at a Level 3 airport on a specific date and time” (IATA, 2015). In
Europe, the slot allocation process consists of two main steps: primary slot allocation,
and slot exchanges and transfers. In the first step, the slot allocation is performed on an
airport-by-airport basis. The requests with historical precedence (grandfather rights)
are allocated first. Then, 50% of the remaining slots are assigned to new entrant users.
The rest is distributed in a non-discriminatory manner to all other users. Therefore
the slots users receive are the outcome of several local allocations, and as such they
may include slots that make the fleet rotation impracticable, or result in an undesirable
schedule. The next step takes place at the IATA conference, where users aim to adjust
the obtained schedule displacement through negotiations and slot exchanges. After the
IATA conference, negotiations may last until shortly before the operations. At Level 2
airports, the facilitator may only propose schedule displacements to airspace users, us-
ing permissions similar to slots. In the rest of the paper, for the ease of terminology,
we will refer to both coordination and facilitation as slot allocation.

This work shows the benefits of optimally coordinating the capacity management
of airports in Europe by simultaneously allocating slots in all the Level 3 and Level 2
airports. This is achieved through SOSTA, an integer linear programming (ILP) for-
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mulation for the Simultaneous Optimization of the SloT Allocation for a network of
airports. SOSTA reproduces the current regulations and best practices, and minimizes
the number of missed allocations and the total schedule displacement cost, in lexico-
graphic order. It could be used to partially replace and shorten the current (lengthy) slot
allocation process. In fact, a simultaneous slot allocation would significantly reduce the
users’ need to negotiate for schedule building and re-building, due to accepted and re-
jected slot requests. Moreover, as shown in the experiments, SOSTA may be a tool for
scenario analysis through the impact assessment of possible regulation changes.

The weaknesses of the current slot allocation practice have been identified and dis-
cussed by various studies (see, e.g., the review by Zografos et al., 2016). In particular,
the existing slot allocation process is highly inefficient because the management of its
complexity (the allocation needs to comply with numerous criteria and rules) is still
largely empirical. To mitigate these inefficiencies, Zografos et al. (2012) formulate an
ILP model that implements EU regulations (and IATA guidelines) and solves the slot
allocation for a single airport. SOSTA extends this model from one airport to a network
of airports, by combining the findings in Castelli et al. (2012), Pellegrini et al. (2012a),
and Corolli et al. (2014). These papers also address the simultaneous allocation of slots
at different interconnected airports, but under a simplified setting.

2 SOSTA’s key features
SOSTA is formulated to satisfy the EU Regulations and IATA Worldwide Slot Guide-
lines (IATA, 2015). In the following, the description of its main features. For a detailed
analysis we refer the interested reader to Pellegrini et al. (2017).

Characteristics of slots. A slot is the right to use the airport facilities for take-off
or landing within a time interval. An interval is characterised by a start time and a
length. Lengths may vary across airports, but all intervals at the same airport have
the same length. Slots must be allocated within a maximum displacement. We refer
to slots associated to departure (arrival) movements as departure (arrival) slots. The
departure and arrival slots associated with the same flight are named coupled slots.
Finally, the two slots associated with two movements to be operated sequentially by
the same aircraft performing two different flights are turnaround slots.

Decision variables. Two sets of binary variables are introduced to decide: i) whether
a requested slot s has to be allocated ot not (missed allocation), and in the former case,
ii) whether slot s is allocated to interval r or not.

Objective functions. SOSTA adopts a lexicographic approach: first, the number of
missed allocations is minimized and then, within the remaining requests, the total cost
of displacement is minimized.

Constraints. Besides imposing that each requested slot is allocated to exactly one
interval unless it is subject to a missed allocation, the following constraints hold:
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Table 1: Comparison of SOSTA and Current.

Presence of grandfather rights Absence of grandfather rights
Missed alloc. Disp. cost Missed alloc. Disp. cost

SOSTA Current SOSTA Current SOSTA Current SOSTA Current
860 2586 10648 10634 334 1666 26981 37895

- Grandfather rights. Grandfather rights are upheld in the slot allocation process.

- Capacity constraints. Depending on the airport, one or more of the following
capacity constraints is imposed: i) Hourly capacity constraints. The bound on
the number of slots is given for periods of one hour, and it may be applied ei-
ther on a rolling basis or sequentially. These capacity constraints may refer to
arrival, departure or total slots. ii) Interval capacity constraints. The bound on
the number of slots is given for each interval.

- Couple constraints. Either both coupled slot requests are accepted, or they are
both subject to a missed allocation. If they are accepted, the demanded flight
duration may be modified only within a predefined range.

- Turnaround constraints. The displacement of two turnaround slots can never
imply a turnaround time shorter than a predefined value.

3 Experimental analysis
We present the results using SOSTA to allocate the slots requested for June 28th 2013,
the busiest day of the year, including all the European Level 3 (107) and Level 2
(79) airports. The model comprises about 145,000 binary variables and 243,000 con-
straints, and exploits real data: i) Airport capacities, from airport coordinators’ web-
sites and Demand Data Repository 2. The latter is a database containing airspace net-
work and traffic data, developed and maintained by EUROCONTROL (the European
Organisation for the Safety of Air Navigation). ii) Airspace users’ slot requests, from
Slot Coordinator, another EUROCONTROL’s database.

First, we validate the model by comparing SOSTA’s with the currently implemented
allocation: the difference is only 6 slots out of the 32,665 slots requested in the test
day. SOSTA reaches optimality in 125 CPU seconds on a computer running Linux
Ubuntu distribution version 14:04, using CPLEX 12:6 as integer linear programming
solver, and exploiting eight Intel Xeon 3.5 Ghz processors with 128 GB RAM.

Second, we test SOSTA’s behavior when a significant imbalance between demand
and capacity exists. Specifically, we compare SOSTA’s and the optimal allocation un-
der the Current rules assuming a uniform 20% reduction of airport capacity across
Europe. The left-hand side of Table 1 shows that the simultaneous slot allocation
at all airports significantly outperforms the current allocation process: the number of
missed allocations decreases by 67% and the total displacement cost remains almost
unchanged. Since the minimization of the number of missed allocations is the first
objective of SOSTA, it always chooses a solution with fewer missing allocations, even
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Figure 1: Airport-by-airport decrease of missed allocations passing from Current to
SOSTA, when grandfather rights are either granted (left) or not (right).

if this may imply a higher displacement cost. SOSTA also shows good computational
performances, as it just needs 140 CPU seconds to reach the optimality.

The right-hand side of Table 1 reports the results when the above comparison is
repeated in absence of grandfather rights. Here SOSTA is used as a tool for scenario
analysis. As expected, the results show that fewer missed allocations are necessary
when no grandfather rights are granted. Moreover, SOSTA allows to further improve
with respect to Current as it reduces the number of missed allocations by 80% and
the total displacement cost by 29%. The computational performance worsens in the
absence of grandfather rights, due to the elimination of several constraints and the
consequent increase of the flexibility of the allocation: the optimality is reached after
19,107 CPU seconds. This corresponds to slightly more than one hour of wall-clock
time on the computer used.

Figure 1 compares the number of Current and SOSTA missed allocations at each
European airport, when grandfather rights are either granted (Figure 1-left) or not (Fig-
ure 1-right). SOSTA always allows a significant reduction of missed allocations: the
larger the triangles’ size, the larger the difference between Current and SOSTA . In
particular, the triangles are red if this difference is greater than 75 missed allocations,
blue if between 50 and 75, green if between 25 and 50, and yellow otherwise. While
the difference is clearly dependent on the presence of grandfather rights, it appears that
the largest differences are found at some busy (but not the busiest) airports: more than
50 missed allocations can be avoided by using SOSTA at Zürich, London Gatwick,
Amsterdam Schiphol, Palma de Mallorca (the test day is a summer day), Düsseldorf
and Madrid Barajas airports, when granting grandfather rights, and only at London
Gatwick and Madrid Barajas airports, otherwise. Instead, in the busiest European air-
ports this difference is more mitigated (always lower than 50 missed allocations): in
London Heathrow, Paris Charles de Gaulle and Frankfurt the differences are, respec-
tively, of 39, 31 and 18 missed allocations when granting grandfather rights, and 22,
47 and 20 otherwise.
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4 Conclusions
In this work we described SOSTA, an ILP model that allows optimizing the slot allo-
cation process in Europe respecting the current regulations and best practices. In the
experimental analysis, we optimized the allocation of the busiest day of 2013. After
validating SOSTA against the current practice, we assessed its performance in case of
large imbalance between demand and capacity. Finally, we used it as a scenario anal-
ysis tool to observe the impact of the presence of grandfather rights. In all the tests
performed, SOSTA outperformed our emulation of the current practice. In future re-
search, we will consider further features of the slot allocation process, as the allocation
of series of slots.
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1 Introduction

The transportation problem is one of the most fundamental and well-known problems in combinatorial
optimization. In this problem, there is a set of sources that supply some resource and a set of destinations
that demand that resource. The goal is to match the supplied resources with the demand while minimizing
cost. If there is an ordering on the pairs of sources and destinations, then a greedy algorithm for the
transportation problem can be implemented by simply considering the pairs in order and assigning as much
remaining resource as possible between the pair. Necessary and sufficient conditions for the optimality of
this greedy algorithm are well-known (Hoffman 1963, Dietrich 1990, Adler et al. 1993). Specifically, the
greedy algorithm will produce an optimal solution for all possible choices of supply and demand if and only
the ordering of pairs is a Monge sequence.

We provide a formulation for a variant of the transportation problem which is dynamic in the sense that
the problem occurs over several time periods, and is stochastic in the sense that new supply and demand
arrives according to a random process. Spivey and Powell (2004) formulated a less general version of this
problem and produced heuristics for its solution. We propose a class of greedy policies and provide sufficient
and necessary conditions for the optimality of these policies.

This work can be applied to the problem of planning a type of air traffic management initiative called
a ground delay program. In a ground delay program, some flights scheduled to travel to some airport are
delayed on the ground in order to prevent excess congestion from forming in the air near the destination
airport. Richetta and Odoni (1993) provided the first formulation of the problem of planning a ground delay
program at an airport, which they called the single airport ground holding problem (SAGHP). Ball et al.
(2010) proposed a variant of this problem and showed that a greedy algorithm provided an optimal solution.
It was later shown that this variant may be reformulated as a transportation problem, and the optimality
of the greedy algorithm can be explained by known properties of greedy algorithms for the transportation
problem (Glover and Ball 2013). We propose a new dynamic formulation for planning ground delay programs,
and we provide an optimal dynamic policy for this problem.

2 A Policy for Dynamic Ground Delay Program Control

In our formulation for the problem of planning a ground delay program, flights are dynamically assigned
arrival times. This problem takes place over T discrete time periods. At the beginning, there are a set of
flights A that wish to travel to an airport and a set of available slots B at this airport. A slot represents a
set of resources required to accommodate the arrival of a flight in a specific time period. Each slot b then
has a corresponding time period τ slot

b . A flight arriving at the airport would only be able to land if a slot
were available at that time.

The problem is to decide in each time period which flights will be allowed to depart and which flights
will not. We assume that each flight a has an original scheduled arrival time τOETA

a and it cannot depart
earlier than this time period. Each flight a also has a fixed, known flight time τfly

a . In this problem, we do
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not allow a flight to depart unless there is an available slot that corresponds with the arrival of the flight.
That is, in order for flight a to depart in time period t then there must be an available slot b such that

t+ τfly
a = τ slot

b

If there is such a slot and the flight is allowed to depart, then the slot is marked unavailable. If a flight is
not allowed to depart at its original scheduled arrival time then that flight must be delayed. The amount of
delay experienced by that flight will continue to lengthen until the flight is allowed to depart. The goal of
the problem is to minimize the total delay experienced by the flights. In each time period, some new flights
or new slots may appear according to some random process. In order for a policy to be a successful policy
for this problem, it must take into account the potential for new flights or slots to arrive.

We define a policy for this problem that we will refer to as the D-RBD policy. The D-RBD policy bears
resemblance to the RBD algorithm described in Ball et al. (2010). However, D-RBD is a dynamic policy
that produces assignments in each time period, while RBD is an algorithm for preallocating flights to slots
at the beginning of the planning period for the ground delay program. In each time period t, the D-RBD
policy examines all flights whose original ETA is at least t. This is exactly the set of flights that could depart
if there were available slots. These flights are sorted according to their flight times, in decreasing order. The
D-RBD policy then considers each flight in order, and each flight is allowed to depart if there is an available
slot for that flight.

Theorem 1. The D-RBD policy always achieves the minimum total delay of any policy.

As far as we are aware, this is the first dynamic policy proposed for ground delay program planning
that achieves the optimal solution without requiring the distribution of the random process that determines
when new slots and new flights will appear. Our formulation of the ground delay program planning problem
can be viewed as a special case of a more general type of dynamic, stochastic, transportation problem, and
Theorem 1 can be derived from a result that we can prove in the more general context.

3 Formulation of a Dynamic Stochastic Transportation Problem

We formulate a variant of the transportation problem that includes dynamic and stochastic elements. There
are T discrete time periods. As in the standard transportation problem, there is a set of sources A and a
set of destinations B. In each time period, new supply may appear at some sources and new demand may
appear at some destinations. This is determined by some random process, which we will refer to as Ω. We
will assume that whenever new supply appears, it appears at a new source that has not yet received supply,
and we can assume likewise that new demand always appears at a new destination. In fact, we can make
this assumption without any loss of generality. We will let At and Bt be the set of new sources receiving
supplies in time period t, and we similarly define Bt to be the set of new destinations receiving demands
in time period t. The state of our system in a time period is described by the supplies and demands that
remain. We let srem

t,a (ω;π) be the amount of supply remaining at source a at the beginning of time period t
in instance ω of the random process under policy π. We similarly define drem

t,b (ω;π) for demand remaining
at destination b.

In each time period, the decision is how much supply to send from each source to meet demand at each
destination. Let xt,a,b(ω;π) be the amount of supply sent by the policy π from source a to meet demand in
destination b in time period t of the instance ω. The amount sent from a to b is not allowed to exceed the
supply remaining at a nor should it exceed the demand remaining at b. Thus, we have a constraint

xt,a,b(ω;π) ≤ min{srem
t,a (ω;π), drem

t,b (ω;π)}

We will refer to a pair of a source and a destination as an arc. Some arcs may be feasible while others may
not, and the feasibility of an arc may change over time. We will let Ft be the set of feasible arcs at time t.
Any movement of supply to meet demand incurs a cost. We let ct,a,b to be the cost of allocating one unit of
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supply from source a to satisfy one unit of demand from destination b in time t. These costs are assumed to
be known. The total cost of the assignment made by policy π in time period t of instance ω is then given by

Ct(ω;π) :=
∑

(a,b)∈Ft

ct,a,bxt,a,b(ω;π)

After the cost is incurred, the supply and demand are both removed, which results in the post-decision state.
Let sxt,a(ω;π) be the amount of supply at source a that remains after the allocations are made in time t in
instance ω under policy π. Let dxt,b(ω;π) be defined similarly for the amount of demand at destination b.
Then, our post-decision state is given by:

sxt,a(ω;π) = srem
t,a (ω;π)−

∑
b∈B

xt,a,b(ω;π),

dxt,b(ω;π) = drem
t,b (ω;π)−

∑
a∈A

xt,a,b(ω;π).

After these allocations are made, the problem proceeds to the next time period, and new supplies and
demands are observed. Let snew

t,a (ω) and dnew
t,b (ω) be the amount of supply and demand appearing at the

beginning of time t in instance ω. The state update is then given by

srem
t+1,a(ω;π) = snew

t+1,a(ω) for a ∈ At+1

drem
t+1,b(ω;π) = dnew

t+1,b(ω) for b ∈ Bt+1

srem
t+1,a(ω;π) = sx

t,a(ω;π) for a ∈ A0 ∪ ... ∪ At

drem
t+1,b(ω;π) = dx

t,b(ω;π) for b ∈ B0 ∪ ... ∪ Bt

We will say that a policy produces a feasible allocation if the policy allocates every unit of supply to a unit
of demand. The goal of the problem is to identify the policy that will produce the minimum cost feasible
allocation.

3.1 Deterministic Problem

Let us consider a problem where it is known which instance ω of the random arrival process will occur. We
provide a formulation for the resulting problem as follows. Define F∗ to be the set of all feasible arcs. That
is,

F∗ := F0 ∪ ... ∪ FT

Under the assumption that knowledge of when our resources will arrive is available, then any optimal policy
would make all allocations at the minimum cost time. This allows us to omit the time that the allocations
occur from our decision variables. We will then let xa,b be a decision variable that represents the amount
of resource from source a that is used to satisfy demand at destination b. The corresponding cost would be
given by

c∗a,b = min{ct,a,b : (a, b) ∈ Ft, t ∈ {0, ..., T}}.
The resulting problem is given by:

min
∑

(a,b)∈F∗
c∗a,bxa,b

such that: ∑
b:(a,b)∈F∗

xa,b = snew
t,a (ω) ∀t ∈ {0, ..., T}, a ∈ At,

∑
a:(a,b)∈F∗

xa,b = dnew
t,b (ω) ∀t ∈ {0, ..., T}, b ∈ Bt.
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Note that this problem is a standard transportation problem. We will refer to this problem as the determin-
istic problem corresponding to instance ω. If a policy achieves the value of the deterministic problem for any
instance ω of any arrival process Ω, then we will say that the policy is oracle-optimal. Given some ordering
≺ of the feasible arcs F∗, a greedy algorithm can be implemented by considering each arc in order and allo-
cating as much remaining supply along that arc as possible. We will use the notation that x∗a,b(ω;≺) is the
amount of resource allocated on the arc (a, b) in the greedy solution using ordering ≺ for the deterministic
problem corresponding to instance ω.

4 Subset Greedy Policies

We define a class of policies for the dynamic stochastic transportation problem as follows. In time period
t, our policy considers a subset Ut of the set of feasible arcs Ft. The policy orders these arcs according
to an ordering ≺t. Then, the policy considers the arcs in order and allocates as much remaining resources
as possible. Such a policy is characterized by the sequence of subsets U0, U1, ..., UT and the sequence of
corresponding orderings ≺0,≺1, ...,≺T . In order to simplify notation, if we have an ordering ≺ on some set
S and we have subsets V1, V2 ⊆ S then we will say that V1 ≺ V2 if v1 ≺ v2 for any v1 ∈ V1 and v2 ∈ V2. We
show that for any subset-greedy policy, there is an equivalent policy with disjoint subsets.

Lemma 1. Let there be a subset-greedy policy π with subsets U0, U1, ..., UT and corresponding orderings
≺0,≺1, ...,≺T . Let

U ′t = Ut \

(
t−1⋃
t′=0

Ut′

)
and let ≺′t be the restriction of ≺t to the set U ′t. Then the subset-greedy policy π′ with subsets U ′0, U

′
1, ..., U

′
T

and ordering ≺′0,≺′1, ...,≺′T is equivalent to the policy π.

As long as every feasible arc appears in at least one of the subsets U0, ..., UT , we can observe that the
assignment made by a subset greedy policy will produce the same assignments as a greedy solution to the
deterministic problem, although the subset greedy policy will not necessarily make them at the optimal time.

Corollary 1. Let there be a subset-greedy policy π with subsets U0, ..., UT with corresponding orderings
≺1, ...,≺T . If U0, ..., UT form a partition of F∗, then there exists an ordering ≺∗ on F∗ such that

T∑
t=0

xt,a,b(ω;π) = x∗a,b(ω;≺∗)

for any a ∈ A, b ∈ B, and for instance ω of any arrival process Ω. In particular, the ordering ≺∗ on F∗ is
defined such that:

1. Ut ≺∗ Ut′ for any times τ, τ ′ with t < t′,

2. for u1, u2 ∈ Ut then u1 ≺∗ u2 if and only if u1 ≺t u2.

If the policy does make all of its assignments at the minimum cost times, then it will achieve the same cost
as the corresponding greedy solution to the deterministic problem. This allows us to use known conditions
for optimality of greedy solutions to transportation problems to produce sufficient and necessary conditions
for the oracle-optimality of a subset-greedy policy. Let Mt be the subset of feasible arcs Ft in time period
t such that the minimum cost for moving resource along these arcs is reached in time period t.

Theorem 2. Let π be a subset-greedy policy with disjoint subsets U0, U1, ..., UT and corresponding orderings
≺0,≺1, ...,≺T . Let ≺∗ be the corresponding ordering on F∗ as described in . Then π is oracle-optimal if
and only if Ut ⊆ Mt for all t, the subsets U0, U1, ..., UT form a partition of Ft, and ≺∗ produces a Monge
sequence for the deterministic problem.

4



A subset-greedy policy is oracle-optimal if and only if it always makes allocations at the minimum cost
time, it considers all feasible allocations, and it corresponds to a Monge sequence of the deterministic problem.

Our result for the variant of the SAGHP is a special case of our result for the dynamic stochastic
transportation problem. We can show that the former problem may be reduced to the latter problem, and
that the D-RBD policy is a special case of a subset greedy policy. Then we can show that the requirements
of Theorem 2 are satisfied, which implies the optimality results given in Theorem 1.

5 Conclusion and Further Work

We provide a formulation for a new transportation problem to a setting that is both dynamic and stochastic,
and we describe a type of greedy policy for this problem. We provide necessary and sufficient conditions
under which this greedy policy will achieve the same solution that would be achieved if we had complete
knowledge of the stochastic process. Using these conditions, we can prove the optimality of a dynamic policy
for ground delay program planning Ball et al. (2010).

Since we provided necessary and sufficient conditions for the oracle-optimality of a certain class of policies,
our work naturally provides sufficient conditions for the existence of an oracle-optimal policy for the dynamic
stochastic transportation problem. However, it seems plausible that some instances of the dynamic stochastic
transportation problem may have oracle-optimal policies that are not subset greedy policies. Further work
could provide a more complete characterization of the conditions under which oracle-optimal policies exist.
We also do not provide a practical method for checking whether or not our conditions are satisfied. Future
research could produce an algorithm that would determine whether or not an oracle-optimal subset greedy
policy exists for a dynamic stochastic transportation problem.

While Ball et al. (2010) showed that the RBD algorithm was optimal in terms of minimizing delay, they
also showed that this algorithm can produce allocations that are not very equitable. Our policy would likely
suffer from the same weakness. It may be possible to extend the problem to include equity considerations
while still preserving the properties of the original problem that allow for a simple optimal policy.
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The economic consequences of air transportation delays are well-known (e.g. Ball et al.
2010, Ferguson et al. 2013) and much research has been devoted to reducing them. One cate-
gory of approach is to limit the demand placed on the underlying system. This is most often
accomplished by defining a set of airport slots and requiring that any flight takeoff or landing
operation use a designated slot. Such slots are nearly always allocated and reallocated to
flight operators using various administrative rules. There is a growing body of research and
specific societal efforts that investigate the merits and feasibility of using market-based ap-
proaches for such allocations. When one considers the fundamental nature of this problem,
it becomes clear that the required market mechanism is some form of combinatorial auction
(see Ball et al. 2006, Rassenti et al. 1982). A combinatorial auction solves the problem of
finding prices to sell a diverse set of products where potential bidders/buyers place values
on packages consisting of multiple products. In the airport setting a product is the right to
conduct a landing or takeoff operation within a specific time window. Of course, a scheduled
air carrier will typically desire multiple slots within a given time window and also slots from
multiple time windows, hence the need for package bidding and a combinatorial auction.

A key input to defining an airport slot auction is the definition of time window widths
and the number of slots available within each time window. The number of operations a
runway can support depends on the sequence and mix of aircraft types, the efficiency and
skill of the human operators (air traffic controllers and pilots), weather conditions as well
as other factors. For these reasons, the system should be modeled as one in which expected
congestion and delays increase as a function of the number of slots rather than one in which
there is a hard limit on the number of operations. Viewed from this perspective one is then
left with the challenge of defining the number of slots to assign to each time window.

There is a body of work that seeks to define appropriate slot levels (e.g. Churchill et al.
2012) Inevitably, any approach must evaluate the fundamental tradeoff: more slots lead to
more scheduled operations at the expense of more congestion and delays. In a setting where
a single airline offered all flights at an airport that airline should be able to properly evaluate
this tradeoff. However, in a competitive environment, a single airline could decide to add
one or two additional flights and only internalize the delay on those two flights. Yet, those

1



additional flights would induce additional delay on several other flights (owned by other
airlines). In fact, the failure of an airline to internalize all the delay costs it causes is a
fundamental reason that slot controls are necessary. The premise of this paper is to define
an auction mechanism where the valuation problem required of airline bidders is the same
that would be required of an airline operating in non-competitive environment.

Specifically, under our model, a set of time windows, t = 1, ..., T and a set of slot
profiles p ∈ Γ are defined, where associated with each p ∈ Γ is a vector of slot limits:
(n1(p), ..., nT (p)). We assume each flight operator/bidder is able to evaluate a value function
vj(yj1, ..., yjT , p), which gives the value to that bidder of the slot vector (yj1, ..., yjT ) under
profile p, where yjt equals the number of slots owned by flight operator j in time window t.
The underlying assumption is that a slot profile p can be mapped by the flight operator to
a level of congestion and delays and that a value can be placed on a slot vector within that
environment.

We now investigate how a slot auction can be developed using these bidder valuation
capabilities. A fundamental result in combinatorial auctions is that the use of Vickrey-Clark-
Groves (VCG) prices (see Cramton et al. (2006) for background) are incentive compatible
in the sense that a dominant strategy for bidders is to submit bids for packages that are
equal to their internal valuation of those packages. It has been widely observed in the open
literature that this result is quite robust relative to the nature of the winner determination
problem solved.

In our framework there is a set flight operator/bidders, N , and each j ∈ N can formulate
bids, xj = (yj1, ..., yjT , p) and associate a value vj(xj) with such bids. We denote by Φj the set
of all possible bids of interest to j. Bidder j is responsible for defining a bid function bj(xj),
which maps each xj ∈ Φj to a bid price. A key issue in auction design is the relationship
between the bidder’s private value function vj and bj. The VCG result referenced in the prior
paragraph implies that that bidders are incentivized to set bj = vj. In general, the resources
awarded by the auctioneer must satisfy a set of constraints, Ω. That is, the resources
allocated to all bidders, (xj)j∈N must satisfy, (xj)j∈N ∈ Ω. The basic set of constraints in
our setting would be that a single profile p be chosen and that the associated slot limits be
respected, i.e.

∑
j yjt ≤ nt(p) for all t.

Allowing the bidding process to set the slot limits, brings to the forefront the potential
for bidders to use the auction process to increase market power. Specifically, as an bidder’s
share of slots increases, that bidder gains market power allowing some degree of monopoly
rents to be extracted. This would not be considered a desirable outcome. The auction design
we contemplate not only allows market power to be gained by increasing a given bidder’s
slot holdings but also by reducing overall holdings. Because of this, we feel it is important
to explicitly limit marker power within the auction design. A common measure of market
concentration is the Herfindhal index (HHI):

∑
i∈N α

2
i where N is the set of competitors in

the market and αi is competitor i’s fraction of total market share. To apply the HHI to our
problem we would define:

αi = (flight operator i slot holding)/(total number of slots) (1)

We propose to apply the HHI to slot holdings over two or more periods of the day. For
example, if there were two busy periods during the day and say 2 to 4 time windows covered
each of these busy periods then constraints could be developed that limited the HHI value
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for these two periods. Such constraints would be incorporated into Ω; appropriate linear
constraints can be defined within a linear integer programming representation of the winner
determination problem.

Thus, far we have developed a conceptual approach to a combinatorial airport slot auction
that achieves the objectives we discussed at the outset. There are many further details to
be developed in order to achieve a practical mechanism design. Our objective here is not
to try to accomplish this. We contend that the concepts outlined, the basic VCG result as
well as the existing knowledge base on combinatorial auctions, e.g. Cramton et al. (2006)
imply that a such a mechanism could be developed. Rather, in this paper we seek to
investigate other issues related to the viability of our concepts. Specifically, we consider
the overall welfare gain from this approach as well as the distribution in consumer surplus
among the parties involved. To accomplish this, we develop two models. The first is a
stylized continuous approximation and the second is an integer programming model applied
applied to a historical dataset.

1. Continuous Approximation

In our model we assume a set of identical flight operators. The flight operator value function
increases with the number of slots it is given. The number of flight operations is proportional
to the number of slots assigned, and these operations are distributed uniformly throughout
the day. We compute flight delays using a deterministic queueing model. The value of a set of
slots to a flight operator decreases linearly with the total delay. With this model we can find
closed-form expressions for the total auction value as well as the VCG payments. Further,
we can find a closed-form for expression for the total value of an “uncontrolled schedule”, i.e.
the flight schedule that would result in the absence of any slot controls. Figure 1 provides a
graphical representation of these results.

Figure 1: Results from Continuous Approximation
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The series ‘Auction’ shows the total value of the slots allocated in the auction, while
the series ‘Auction Minus Payments’ displays this value minus the payments that the flight
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operators make in the auction. The series ‘uncontrolled’ shows the value that the flight
operators derive in the uncontrolled setting. These computational results show the degree
to which the total value of the schedule resulting from the auction exceeds the value of the
schedule resulting in an uncontrolled setting. They also show (not surprisingly) that the flight
operators will be worse off if they are required to participate in such an auction. Further
results show the total delay reduction achieved (which is more valuable to passengers – and
society – then to flight operators). These results indicate that such an auction is desirable
from a public policy perspective but that gaining flight-operator buy-in will require explicit
policy measures.

2. Integer Programming Model

Our integer programming model represents the winner determination problem for a specific
set of bidder valuation functions. We start with a historical schedule and assume that this
contains the desired schedule for each airline whose flights are included in the schedule. The
model includes a vector of slot requests for each airline j as defined earlier, (yj1, ..., yjT ) It
also includes slot profile variables and constraints, insuring that a single profile is chosen and
that the total number of slots assigned does not exceed the limits indicated in the profile.
A set of flight variables and constraints are defined for each airline. Flights may be left as
they are in the current schedule, moved to an alternate time period or removed from the
schedule. Appropriate costs are associated with the second two options. An average flight
delay is computed for each time window under each slot profile by applying an airport delay
model (Mukherjee et al. 2005) to the possible profiles. The delay associated with a slot
is applied to the flights arriving or departing in each slot and an appropriate delay cost is
assigned to these flights. Thus, each airline’s value function is defined through this set of
constraints and costs. We solve this model to find the total value produced by the auction
and can also compute the VCG payments. We can apply the same delay cost function to the
original schedule to obtain the net value of that schedule (flight values minus delay costs).
This procedure was carried out with several values of delay. The results are shown in Figure
2. The two plots in Figure 2 contain the same information. The series labeled ‘Auction’
shows the total value of the schedule produced by the auction. In order to generate the series
labeled ‘Auction Minus Payments,’ we subtract the payments made by the flight operators
from the value of the slots that they are allocated in the auction. The value of the original
schedule is shown in the series labeled ‘Original Schedule.’ Similarly to the results of the
continuous model, we see that the auction is able to produce a better allocation of slots than
the original schedule. However, the payments that the flight operators are larger than the
gain in value that the flight operators receive from the better allocation. Further analysis of
these results provide specific information on delay reduction and change in schedule value
for each airline.

3. Conclusions

This paper defines, at a conceptual level, a new combinatorial auction mechanism in which
the congestion levels are set by the bidders within the auction mechanism. It evaluates this
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Figure 2: Results from IP Model
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concept for the challenge of auctioning airport landing slots. The results provide insight into
the public policy challenges and approaches to overcoming these challenges are discussed.
This approach is compared to recently developed administrative approaches, e.g. (Jacquillat
and Odoni 2015).
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Efficiency, Equity and On-time Performance Objectives
in Airport Demand Management

Alexandre Jacquillat1 and Vikrant Vaze2

1Carnegie Mellon University, Heinz College
2Dartmouth College, Thayer School of Engineering

1 Introduction

Absent opportunities for increases in airport capacity or operating enhancements, demand man-
agement can be used to better match airport demand and capacity. It commonly takes the form of
scheduling interventions that control peak-hour scheduling levels. Busy airports outside the United
States operate under slot control policies. In contrast, airline schedules are weakly constrained at
US airports. A few airports use “flight caps”, but they are much less severe than at slot-controlled
airports. As a result of these regulatory differences, US airports achieve higher capacity utilization,
but also face larger delays than their European counterparts (Morisset and Odoni, 2011).

Recent research has showed that performance improvements could be achieved at the busiest
US airports through limited scheduling interventions that involve only temporal shifts in demand
(i.e., changes in the intra-day timetabling of flights), and no reduction in overall demand (i.e., no
change in the set of flights scheduled in the day) (Vaze and Barnhart, 2012; Swaroop et al., 2012;
Pyrgiotis and Odoni, 2016; Jacquillat and Odoni, 2015). However, existing approaches are focused
exclusively on overall scheduling levels at the airports, without considering explicitly the impact
of the interventions on the different airlines. In turn, they may penalize one airline (or a small
number of airlines) disproportionately.

This paper develops and solves a set of optimization models that incorporate inter-airline eq-
uity considerations into airport scheduling interventions. We consider a scheduling process that
starts with the preferred schedule of flights, provided by the airlines, and that proposes some
scheduling adjustments to reduce anticipated delays. We develop performance indicators based
on efficiency, inter-airline equity, and on-time performance, and propose an original lexicographic
modeling architecture to optimize scheduling interventions across these objectives. We then per-
form a theoretical analysis to show that, under some scheduling conditions, efficiency and equity
can be jointly maximized and, conversely, that a trade-off between these two objectives can arise in
under certain conditions. Last, we generate and solve real-world full scale computational scenarios
at New York City’s John F. Kennedy Airport (JFK) and show that, under a wide range of realistic
and hypothetical scheduling conditions, the consideration of efficiency-based objectives exclusively
in airport scheduling interventions may lead to highly inequitable outcomes, but that inter-airline
equity can be achieved at no (or minimal) efficiency losses using our models. This suggests that
existing approaches for scheduling interventions can be effectively extended to include inter-airline
equity considerations.

2 Model Development

The starting point of our model is the Integrated Capacity Utilization and Scheduling Model (ICUSM)
developed in previous research by Jacquillat and Odoni (2015). It provides a modeling framework

1



INFORMS Transportation and Logistics Society First Triennial Conference

for optimizing congestion-mitigating scheduling interventions, but does not account for inter-airline
equity considerations.

To address this limitation, we first define the following inputs and variables:

F = set of flights, indexed by i = 1, ..., F
A = set of airlines, indexed by a = 1, ..., A
Fa = set of flights scheduled by airline a at the airport under consideration
vi = valuation of flight i
ui = displacement (positive or negative) of flight i, as number of 15-minute periods

We propose a set of three performance attributes for scheduling interventions: (i) efficiency (i.e.,
meeting airline scheduling preferences), (ii) inter-airline equity (i.e., balancing scheduling adjust-
ments fairly among the airlines), and (iii) on-time performance (i.e., mitigating airport congestion).
We characterize the trade space between these three attributes by developing a lexicographic opti-
mization approach that:

1. Fixes on-time performance targets: We impose peak expected arrival and departure queue
length targets, denoted by AMAX and AMAX, respectively.

2. Maximizes efficiency, subject to scheduling constraints, network connectivity constraints, and
on-time performance targets: We formulate the efficiency-maximizing problem by lexicograph-
ically maximizing, first, the largest displacement that any flight will sustain, and, second, the
total weighted displacement of the schedule. We denote by δ∗ and ∆∗ their optimal values,
respectively.

min max
i∈F
|ui|

s.t. Scheduling and network connectivity constraints

On-time performance constraints

min
∑
i∈F

vi |ui|

s.t. Scheduling and network connectivity constraints

On-time performance constraints

Min-max efficiency objectives: |ui| ≤ δ∗, ∀i ∈ F

3. Maximizes inter-airline equity, subject to scheduling constraints, network connectivity con-
straints, on-time performance constraints, and efficiency targets. We lexicographically min-
imize the disutilities borne by the airlines, denoted by σa and quantified as the weighted
per-flight displacement, i.e., σa = 1

|Fa|
∑

i∈Fa vi |ui| for all a ∈ A. To characterize the trade
space between efficiency and equity, we impose that min-max efficiency must be optimal and
we denote by ρ ∈ [0,∞) the relative loss in weighted efficiency that is allowed. When ρ =∞,
we only maximize equity (without any weighted efficiency consideration). When ρ = 0, we

Jacquillat and Vaze 2
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maximize equity under optimal efficiency.

lex min

(
1

|Fa|
∑
i∈Fa

vi |ui|

)
a∈A

s.t. Scheduling and network connectivity constraints

On-time performance constraints

Min-max efficiency objectives: |ui| ≤ δ∗,∀i ∈ F

Weighted efficiency objectives:
∑
i∈F

vi |ui| ≤ (1 + ρ) ∆∗

3 Theoretical Results

First, we show that efficiency and equity can be jointly maximized in the absence of network con-
nections, under uniform flight valuations, and some scheduling conditions detailed in the following
two propositions. Figure 1 provides an illustration of the scheduling conditions considered in each
of these two propositions. We also introduce the following notations. We denote the number of
flights scheduled in period t by Dt and the capacity limit in period t by λ̂t.

Proposition 3.1 (Figure 1a) shows that efficiency and equity can be jointly maximized if the
number of flights scheduled over every set of three consecutive time periods is lower than the total
number of flights that can be scheduled over the same three periods. In that case, the imbalances
between demand and capacity are small enough so no time period is such that some flights get
displaced to that period and some other flights get displaced from that period.

Proposition 3.1 If
∑t+1

l=t−1 |Dl| ≤
∑t+1

l=t−1 λ̂l, ∀t ∈ T , then there exists a solution that simultane-
ously solves the efficiency-maximizing and the equity-maximizing problems.

Proposition 3.2 (Figure 1b) shows that efficiency and equity can be jointly maximized if the
flight distribution across periods is the same for all airlines. In that case, the schedules of flights of
the airlines exhibit the same intra-day variations, which provides significant flexibility in terms of
choosing the airlines whose flights should be rescheduled.

Proposition 3.2 If δ∗ = 1 period and there exist integers (αa)a∈A and (βt)t∈T such that |Dt ∩ Fa| =
αaβt, ∀a ∈ A, t ∈ T , then there exists a solution that simultaneously solves the efficiency-maximizing
and the equity-maximizing problems.

Conversely, we also show that a trade-off between efficiency and equity can arise through (i) in-
ter-airline differences in intra-day flight schedule variations, (ii) network connections, and (iii) in-
tra-airline variations in flight valuations.

4 Computational Results

We then generate computational scenarios at JFK to analyze the performance of the proposed
mechanism. We use flight-level data from the Aviation System Performance Metrics (ASPM)
(Federal Aviation Administration, 2013) and passenger-level data from the database developed by
Barnhart et al. (2014).

Jacquillat and Vaze 3
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(a) Proposition 3.1 (b) Proposition 3.2

Figure 1: Example of scheduling conditions of Propositions 3.1 and 3.2

We first consider the case where all flights are equally valued (i.e., if vi = 1, ∀i ∈ F), which
corresponds to the current scheduling environment based on the “a flight is a flight” paradigm. Ta-
ble 1 reports three sets of results, for different values of the on-time performance targets AMAX and
DMAX: (i) a solution that minimizes inter-airline equity under optimal efficiency (Problem P2),
(ii) a solution obtained under efficiency objectives alone (Problem P2), and (iii) a solution that

maximizes inter-airline equity under optimal efficiency (Problem P̂3(ρ∗))). The table reports the
total schedule displacement faced by each airline (that is, ∆ =

∑
i∈F |ui|), each airline’s disutility

(i.e., its weighted per-flight displacement σa), and the ratio of the largest to smallest disutility across
airlines. These results show that, for any set of values of AMAX and DMAX that we considered,
the modeling approach developed in this paper provides strong equity gains at no loss in efficiency.
Specifically: (i) the set of efficiency-maximizing solutions includes highly inequitable outcomes,
reflected by large values of the max-min ratio maxa σa

mina σa
under Problem P2, (ii) considering efficiency

objectives only (Problem P2) does not result in the most inequitable outcome in that set, but

can still lead to low inter-airline equity, and (iii) the equity-maximizing solution (Problem P̂3(ρ∗))
results in high inter-airline equity (e.g., low values of the ratio maxa σa

mina σa
) and the same total displace-

ment as the efficiency-maximizing solution (Problem P2) in all cases considered. Therefore, joint
optimization of efficiency and equity is achievable under current schedules of flights and uniform
flight valuations (which is the assumption widely used in current practice). In other words, even
though the conditions of Propositions 3.1 and 3.2 are not verified, the insights of joint maximization
of efficiency and equity still hold in realistic conditions.

Second, we consider the case where all flights are not equally valued. This captures potential
extensions of existing and other previously proposed mechanisms for airport scheduling interven-
tions that would allow the airlines to provide the relative timetabling flexibility of their flights
(e.g., through an auction-based or credit-based mechanism). In contrast to the previous case of
uniform flight valuations, efficiency and inter-airline equity can no longer be jointly maximized, but
results (not reported in this abstract) show that accounting for inter-airline equity can significantly
improve the outcome of scheduling interventions. Specifically, we find that ignoring inter-airline
equity (i.e., optimizing efficiency-based objectives alone) may lead to highly inequitable outcomes,
and that inter-airline equity can be achieved at comparatively small losses in efficiency.

Jacquillat and Vaze 4
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Table 1: Number of flights displaced and airline disutilities per airline under uniform valuations

On-time targets Number of flights displaced Disutility: σa = 1
|Fa|

∑
i∈Fa

|ui|

AMAX DMAX Model DAL AAL JBU Others All DAL AAL JBU Others maxa σa
mina σa

14 23 P2 1 13 1 5 20 0.3% 5.0% 0.6% 1.2% 16.00

P2 1 9 2 8 20 0.3% 3.5% 1.1% 2.0% 11.08

P̂3(ρ∗) 4 5 3 8 20 1.3% 1.9% 1.7% 2.0% 1.57

13 20 P2 1 29 9 7 46 0.3% 11.2% 5.2% 1.7% 35.69

P2 7 18 8 13 46 2.2% 6.9% 4.6% 3.2% 3.16

P̂3(ρ∗) 13 10 7 16 46 4.1% 3.8% 4.0% 3.9% 1.06

12 18 P2 1 28 27 9 65 0.3% 10.8% 15.5% 2.2% 49.66

P2 10 27 10 18 65 3.1% 10.4% 5.7% 4.4% 3.32

P̂3(ρ∗) 18 14 10 23 65 5.6% 5.4% 5.7% 5.6% 1.07

11 15 P2 37 113 39 17 206 11.6% 43.5% 22.4% 4.2% 10.43

P2 50 57 32 67 206 15.6% 21.9% 18.4% 16.4% 1.40

P̂3(ρ∗) 57 46 31 72 206 17.8% 17.7% 17.8% 17.6% 1.01

In turn, the approach developed in this paper offers the potential to extend existing approaches
to airport demand management (either the slot control policies in place at busy airports outside the
United States, or the scheduling practices at a few of the busiest US airports where flight caps are in
place) in a way that balances scheduling interventions fairly among the airlines, thus considerably
enhancing their applicability in practice.
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1. Introduction
It is widely recognized that rising air traffic demand has placed a significant stress on the entire Air Traffic
Management (ATM) system, costing airlines, passengers, and the overall economy several billions of dol-
lars each year. While injecting additional capacity into the ATM system through infrastructure development
can relieve the stress placed on the system, it has become fairly evident that there is still sufficient scope
for improvement within the existing ATM system by squeezing additional capacity from critical bottleneck
operations related to arrivals, departures, runways, and taxiways. One such aspect is optimizing sequencing
and scheduling of flight operations on runways, which is commonly referred to in the literature as the Air-
craft Sequencing Problem (ASP). Specifically, in the static version of this problem; given a set of aircraft,
along with information on the earliest/latest operation time for each aircraft (be it an arrival or a departure),
and the minimum safety regulations to protect trailing aircraft from wake vortices generated by leading air-
craft; the objective is to determine a sequence (that optimizes a predefined objective) while simultaneously
achieving safety, efficiency, and equity in the ATM system. Passenger safety is achieved by maintaining
the required separations between aircraft; runway efficiency is equivalent to achieving low average delay
or high throughput; and airline equity is modeled by implementing a constrained position shifting (CPS)
strategy wherein an aircraft cannot be shifted by more than k positions (the so-called maximum position
shifting (MPS) parameter) from its initial FCFS-based position.

Many variations of the ASP can be postulated depending upon the number of runways (single or multiple);
mode of runway operations (segregated or mixed); problem objectives (minimizing delay or maximizing
throughput); and constraints such as inclusion of time windows, permissibility of early landings, and CPS
requirements. While the ASP on a single runway has been extensively studied in the literature ([1–4]),
the multiple runway ASP (m-ASP) has received scant attention, and the works that exist only consider the
simpler objective function of minimizing weighted delay without imposing any CPS requirements ([5, 6]).
Note that the m-ASP is a theoretically harder problem to solve as compared to the 1-ASP (single runway
ASP) because of the additional runway allocation decisions ([7]) that need to be incorporated into the
model formulation. The equivalence of the m-ASP with the well-known vehicle routing problem with
time-windows (VRPTW) has already been established, which renders this an NP-Hard problem. The m-
ASP is also a more practically relevant problem than its single runway variant because most of the busy
international airports have at least two runways.

Keeping in view the importance as well as the challenges posed in solving the generic m-ASP, in this
paper, we consider a special case of the m-ASP on two runways (which we refer to as 2-ASP), while
accounting for both segregated and mixed-mode of operations, CPS constraints, wide time-windows, early
landings/departures, and the objective of maximizing total throughput from both runways. To the best
of our knowledge, no efficient solution exists for solving the 2-ASP under the aforementioned scenarios.
We begin by formulating our problem as a 0-1 mixed-integer program (MIP), which is an adaptation of
the model in [2] enhanced with the inclusion of the CPS constraints and symmetry breaking constraints.
Recognizing that solving this model is not computationally viable for large-scale instances, the main thrust
of this paper is an extension of the massively parallelizable data-splitting algorithm (DS-ASP), originally
proposed for the 1-ASP, that optimizes flight sequences by a repeated application of this 0-1 MIP on smaller
data sets, while accounting for the direct and induced effects of these smaller data sets on one another, and
demonstrates the efficacy of this approach.
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The remainder of this paper is organized as follows. In Section 2, we present the 0-1 MIP formulation for
the 2-ASP along with some preliminary computations. Next, in Section 3, the details of the data-splitting
algorithm, and its pseudo-code are described. Then, Section 4 demonstrates some computational results
for large-scale (realistic) instances, and finally, Section 5 summarizes the contributions of this work and
suggests extensions for future research.

2. Optimization Problem
We are now ready to formulate the 2-ASP as a 0-1 mixed integer program, as detailed below.

Description of Index Sets and Parameters
• F : Set of all arriving and departing flights
• R : Set of all runways
• Ei : Earliest time of arrival (departure) of aircraft i
• Ti : Target time of arrival (departure) of aircraft i
• Li : Latest time of arrival (departure) of aircraft i
• ∆si j : Required safety separation (in seconds) at runway threshold, if flight i is ahead of flight j
• seqi : Position of flight i based on the FCFS sequence
• k : Specified maximum position shifting (MPS) parameter

Decision Variables

• xi j =

{
1, if flight i is ahead of flight j in sequence
0, otherwise (1a)

• yir =

{
1, if flight i lands on runway r
0, otherwise (1b)

• wi j =

{
1, if flight i and flight j land on same runway
0, otherwise (1c)

• ti = Scheduled time of arrival (departure) of flight i (1d)
• zr = Makespan of runway r (1e)

2-ASP: Minimize z1 (2a)
subject to: xi j + x ji = 1, ∀ i < j, (i, j) ∈ F (2b)

∑
r∈R

yir = 1, ∀ i ∈ F (2c)

wi j ≥ yir + y jr−1, ∀ i < j, (i, j) ∈ F , ∀ r ∈ R (2d)

wi j ≤ yir− y jr +1, ∀ i < j, (i, j) ∈ F , ∀ r ∈ R (2e)

wi j = w ji, ∀ i < j, (i, j) ∈ F (2f)

t j ≥ ti +∆si jwi j−M1(1− xi j), ∀ (i, j) ∈ F (2g)

zr ≥ ti−M2(1− yir), ∀ i ∈ F , ∀ r ∈ R (2h)

z1 ≥ z2 (2i)

− k ≤ (n− ∑
j∈F , i6= j

xi j)− seqi ≤ k, ∀ i ∈ F (2j)

Ei ≤ ti ≤ Li, ∀ i ∈ F (2k)

xi j,wi j ∈ {0,1}, ∀ (i, j) ∈ F ; yir ∈ {0,1}, zr, ti ≥ 0, ∀ i ∈ F , r ∈ R . (2l)

In the above formulation, the objective function (2a) seeks to minimize the makespan; constraint (2b) en-
forces the order precedence relationship between flights i and j; constraint (2c) dictates that each plane is
assigned to exactly one runway; constraints (2d) and (2e) together ensure that the conditional relationships
between the w- and y- variables are respected; constraint (2f) is a symmetry constraint that maintains con-
sistency of runway allocations; constraint (2g) mandates the time-based separation requirements between
flights at the runway (as specified by the FAA for various flight classes), where M1 ≡ (Li +∆si j −E j),
are satisfied; constraint (2h) defines the makespan of runway r to be greater than or equal to the scheduled
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times of all flights allocated to runway r, where M2 ≡ Li ; constraint (2i) breaks the symmetry by specifying
that the last scheduled flight in the overall schedule must be assigned to the first runway; constraint (2j) im-
poses the CPS constraint that an aircraft cannot be shifted by more than k positions from its initial (FCFS)
position, where n ≡ |F |; constraint (2k) maintains the scheduled time of arrival (departure) at the runway
to be between the earliest and latest times for each aircraft; and finally constraint (2l) imposes binary and
non-negativity restrictions on the (w, x, y)- and (t, z)- variables, respectively.

3. Algorithm
There are two stages involved in the proposed data-splitting algorithm (DS-ASP). The first stage is instance
generation, in which the original flight data-set is divided into several possible pairs of disjoint subsets of
leading and following aircraft. The second is the solution stage, in which each resulting subset pair is
independently solved to determine its optimal solution. The obtained solutions are finally compared to get
the overall optimum. The underlying drivers for using this algorithm are: (i) Given two sets of aircraft,
under the condition that one set has to necessarily follow the other, determining the optimal solution for
each set separately, while accounting for the effect of the resulting schedule on their respective objective
functions, is always computationally more efficient; (ii) As a result of the CPS constraint, the number of
pairs of leading and following data-sets are very limited, i.e., of the order of

(2k
k

)
, where k is value of the

MPS parameter, and is independent of the total number of flights n; (iii) The 0-1 MIP formulation (Problem
2-ASP) is computationally very efficient when solving smaller-sized instances (≤ 15 aircraft); and (iv) It is
massively parallelizable.

3.1 Algorithmic outline for arriving traffic
Stage A: Preparation of instance pairs

Let n denote the number of aircraft positioned at {1, ...,m−1,m,m+1, ...,n} in FCFS order. After splitting
this flight data into two (possibly unequal) halves, the leading set A and following set B are composed of
aircraft at positions {1, ...,m} and {m+1, ...,n}, respectively. Owing to the CPS constraint, as only aircraft
between (m− k + 1) and (m+ k) positions can crossover between the leading/following sets, there are
only

(2k
k

)
such pairs. Note that both the aircraft type and the arrival time of the last scheduled flight on

each runway in the leading set affect the makespan of the following set (as well as the overall makespan)
because aircraft in the following set have to maintain the required safety separations from their counterparts
in the leading set. Hence, in order to account for such phenomenon, the number of pairs are further
enlarged by fixing all possible aircraft in the leading set that can be positioned last on each runway, and
a constraint is added to the optimization problem corresponding to the following set to ensure that all
the flights arrive after the landing time of the last aircraft in the leading set. Specifically, observing that
only aircraft between positions (m−k) to m can occupy the last position in set A, each pair (A, B) results in
additional combinations, denoted as (Ȧ, B). Furthermore, each pair (Ȧ, B) gives rise to further combinations
(Ä, B) after fixing each aircraft type which can land at the last position on the second runway. These (Ä,
B) pairs are what will finally be used by the DS-ASP algorithm. This pairing scheme is illustrated in the
example below.

Consider an instance of eight aircraft {H1,H2,H3,L4,L5,H6,S7,S8}, where each aircraft is represented
by its aircraft type (H: Heavy, L: Large, S: Small) and its relative position in the FCFS sequence. Assuming
k = 2, there are

(4
2

)
= 6 resulting pairs (A, B), which are given by:

(i) A = {H1,H2,H3,L4}, B = {L5,H6,S7,S8}; (ii) A = {H1,H2,H3,L5}, B = {L4,H6,S7,S8}; (iii)
A = {H1,H2,H3,H6}, B = {L4,L5,S7,S8}; (iv) A = {H1,H2,L4,L5}, B = {H3,H6,S7,S8}; (v) A =
{H1,H2,L4,H6}, B = {H3,L5,S7,S8}; (vi) A = {H1,H2,L5,H6}, B = {H3,L4,S7,S8}.
For each of these listed pairs (A, B), permuting flights within set A, predicated on the aircraft occupying the
last position on the first runway (denoted as •̇), results in several additional combinations, which we denote
as (Ȧ, B). As an example, for the case: A = {H1,H2,H3,L4} and B = {L5,H6,S7,S8}, such permutations
within set A result in the following three pairs:

Ȧ = {H1,H2,H3, L̇4}, B = {L5,H6,S7,S8},
Ȧ = {H1,H2,L4, Ḣ3}, B = {L5,H6,S7,S8},
Ȧ = {H1,H3,L4, Ḣ2}, B = {L5,H6,S7,S8}.
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Note that, when A = {H1,H2,H3,H6} and B = {L4,L5,S7,S8}, as aircraft H6 cannot be scheduled be-
fore position 4 in the sequence (as this would violate the CPS constraint), no further pairings are feasi-
ble in this case. Furthermore, if all the aircraft satisfy the ELW rule ([1]), then some of the pairs, e.g.,
Ȧ = {H1,H3,L4,H2} and B = {L5,H6,S7,S8}, can be discarded. Now, as aforementioned, for each of
these pairs (Ȧ, B), several additional derivative pairs (Ä, B) are generated based on the aircraft type which
can be scheduled last on the second runway. As an example, for the pair: Ȧ = {H1,H2,L4, Ḣ3}, B =
{L5,H6,S7,S8}, the resulting derivative (Ä, B) pairs are listed as follows:

Ä = {H1,H2, L̈4, Ḣ3}, B = {L5,H6,S7,S8},
Ä = {Ḧ1, Ḧ2,L4, Ḣ3}, B = {L5,H6,S7,S8}.

Note that in the overall schedule, the landing order of the last scheduled aircraft on the second runway
cannot be fixed in advance, and hence more than one aircraft (denoted as •̈) in Ä resulting from the same
aircraft type are potential candidates to be scheduled last on the second runway.

Stage B: Solving the instance pairs

Let (z̈1, z̈2) denote an optimal state for a leading set Ä, where z̈r denotes the optimal makespan on runway
r (r = 1,2), with z̈1 ≥ z̈2. When optimizing the leading set of flights, it is always desirable to keep the
makespan on the second runway as small as possible so as to accommodate a feasible solution for the
following set of flights. However, there is an inverse relationship between z̈1 and z̈2, i.e., decreasing one
may increase the other, and as a result, a brute-force method that evaluates all possible optimal states (z̈1, z̈2)
remains the only avenue to find the optimal solution. But, the number of such states can be very large and
hence evaluating all possibilities is a computationally intensive task. However, as flights in the following
set are constrained to land at or after z̈1, the key to deciding optimality of the following set is not only to
lower the z̈1-value but rather the gap z̈1− z̈2, because aircraft in the following set that land on the second
runway can take advantage of this gap to land as early as possible. This observation lays the foundation
of our algorithmic design, wherein a nonnegative continuous indicator variable δ, which reflects the to-
be-obtained advantage due to the z̈1− z̈2 gap, is embedded in the optimization runs of the following set.
This δ-variable may take on a non-zero value, which indicates that adding δ to the existing gap z̈1− z̈2, i.e.
optimizing with respect to the state (z̈1, z̈2−δ) may result in a better optimal solution, whereas a zero value
of δ acts as a stopping criteria indicating that no further states resulting from that pair (Ä, B) need to be
evaluated. Furthermore, whenever δ is found to be non-zero, the leading set is re-optimized to seek a new
improved state (z̈1, z̈2). A formal statement of the pseudo-code of the proposed data-splitting algorithm is
given below.

Algorithm 1 Pseudo-code for the proposed data-splitting algorithm.

1: Set iteration counter p← 0, OptVal(p)← +∞, incumbent← OptVal(p), S = {set of all pairs (Ä,B)}.
Go to Step 2.

2: If S = /0, stop; return incumbent as best solution. Else, set p← p+1, and go to Step 3.
3: Arbitrarily select one instance pair (Äp,Bp) from S. Set temp.best, z̈2←+∞. Go to Step 4.

4: Solve 2-ASP for set Äp with OptVal(p)
Äp

= min

{
∑

i∈Äp

θz1 + z2 : (1a)-(2l), z2 ≤ z̈2− ε

}
, where θ is a

(large) weighting parameter and ε > 0 is a predefined tolerance. Let (z̈1, z̈2) be the optimal solution
(state) and denote (l1, l2) to indicate the last aircraft on the first and second runways. Go to Step 5.

5: Solve Problem 2-ASP for set Bp with

OptVal(p)
Bp

= min

{
∑

i∈Bp

z1 + εδ : (1a)-(2l), ti ≥ z̈1, ti ≥ z̈1 + yi1∆sl1i, ti ≥ z̈2 + yi2∆sl2i−δ,∀i ∈ Bp

}
,

where ε is a preset tolerance. If δ > 0 go to Step 6, else go to Step 7.
6: Rerun the optimization problem in Step 5 with constraint δ= 0. If OptVal(p)

Bp
< temp.best, set temp.best

← OptVal(p)
Bp

. Go to Step 4.

7: If OptVal(p)
Bp

< temp.best, set temp.best← OptVal(p)
Bp

; OptVal(p)← temp.best. Go to Step 8.

8: If OptVal(p) < incumbent, set incumbent← OptVal(p). Update S← S\{Äp,Bp}. Go to Step 2.
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4. Computational Results
In our prototype implementation, we tested the proposed data-splitting algorithm on various randomly
generated instances comprising thirty and thirty-five aircraft, under different arrival traffic scenarios. The
traffic mixture for these instances was set as: 40% Heavy + 40% Large + 20% Small aircraft, and the target
times of aircraft were also randomly generated, assuming that each aircraft appears every γ seconds, where
γ = 30 or 35 seconds. We also assume that a flight can arrive or depart up to 60 seconds earlier and no
more than 1800 seconds later than its scheduled target time. All of our computations are performed on a
Windows machine, equipped with a Intel Xeon CPU E5-1630v3 3.70GHz 32GB RAM processor, using
MATLAB R2011b in conjunction with GuRoBi 6.0.0 as the underlying MIP-solver.

From the results recorded in Table 1, on average, we can observe more than an 81% reduction in the
computational time required to solve all randomly generated instances by using the proposed DS-ASP
algorithm as compared to directly solving the original 2-ASP formulation (2a)-(2l) using the commercially
available solver GuRoBi [8]. Moreover, this computational reduction is in excess of 97%, when the instance
pairs are solved in parallel.

Table 1: Computational time comparison between the original MIP model and data splitting algorithm
Without Parallelization With Parallelization

Mode of k→ 1 2 3 1 2 3
Operation n / Time (s)↘ 2-ASP DS-ASP 2-ASP DS-ASP 2-ASP DS-ASP DS-ASP DS-ASP DS-ASP

Arrival 30 > 3600 140.9 > 3600 276.9 > 3600 1173.5 35.2 47.4 168.3
Arrival 30 > 3600 130.2 > 3600 428.6 > 3600 2081.7 31 81.7 225.5
Arrival 30 > 3600 58.9 > 3600 216.2 > 3600 384 39.6 57.1 59.6
Arrival 30 > 3600 74.9 > 3600 463.8 > 3600 1688.9 25.4 83.5 241.5
Arrival 35 > 3600 158.2 > 3600 375 > 3600 1138.4 35 69 183.9
Arrival 35 > 3600 180 > 3600 808.4 > 3600 2531 65.3 233.6 255.6

5. Conclusions
In this paper, we proposed an extension of the data-splitting algorithm, originally presented in [1], which
provides real-time optimal solutions for the aircraft sequencing problem on two runways with the objective
of maximizing throughput under both segregated and mixed-traffic conditions. The performance of the
DS-ASP algorithm clearly demonstrates the algorithmic speed-up that can be obtained, while achieving
optimality in all practical test-bed instances. We are also in the process of further improving the efficiency
of the algorithm, notably by reducing the number of instance-pairs and optimal states through model-
enhancements, pruning techniques, and associated flight data analysis. Finally, the computational efficiency
of this algorithm can be further improved by splitting the data into more than two subsets, and the results
of these investigations are forthcoming.
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1. Motivation and Problem Description 

Air traffic demand is expected to grow twofold over the next two decades (IATA 2014, FAA 

2015). Due to this growth, airport surface areas, more specifically runways, have been identified as 

choke points in airport systems, causing serious congestion at airports. According to Balakrishna et al. 

(2010), 60% of delay in air traffic is due to airport operations. Also, according to estimates by Idris 

(2015) and Brinton et al. (2007), taxi-in and taxi-out delays in the U.S. result in extra fuel burn costs 

on the order of $900 million. These delays have led to significant fuel burn costs for airlines and air 

pollutant emissions for the public. Hence, there is a great need to improve the efficiency of airport 

operations to relieve the congestion, reduce fuel consumption and improve customer service. 

To reduce delay and improve airport efficiency, the National Aeronautics and Space 

Administration (NASA) has developed the Airspace Technology Demonstration-2 (ATD-2), aimed at 

integrating the arrival, departure and surface activities and developing precise schedules for flights at 

gates, runways, and arrival/departure fixes. Departure metering, as a key component of ATD-2, is an 

airport surface management procedure that limits the number of aircraft on the runway by either 

holding aircraft at gates or at a predesigned metering area (NATCA 2015). By holding aircraft at 

gates or at a predesigned metering area with engine idle, the departure metering procedure can reduce 

fuel burn costs for airlines and airports through shortening runway queues and decreasing 

unnecessary stops and waits with aircraft engine on. In addition, by integrating the gate, taxiway, and 

runway activities, the procedure can also improve the coordination and communication between 

different functions at airports.  

Field tests have shown significant fuel benefits and suggested an important role for this 

procedure in the Next Generation Air Transportation System (NextGen). The six-month long 

departure metering program at John F. Kennedy International Airport (JFK) has shown to lower fuel 

burn costs by $10-15 million, and carbon dioxide emissions by 48,000 metric tons. In addition, the 

program is also expected to result in significant reduction in delays due to reduced taxing hours 

(Nakahara et al. 2011).  Several other airports are also testing departure metering procedures (Lozito 

2016).   

Our motivating hypothesis in this study is that there is a potentially significant value for airlines 

in using certain departure policies during a departure metering implementation. A key concern in 

departure operations is how to allocate aircraft such that efficiency is improved while throughput is 

being maintained, where efficiency is defined as a function of fuel costs, emissions, noise, and 

runway utilization. This is a difficult dynamic problem where uncertainties of new arrivals and 
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pushback delay need to be taken into account. In this study, we address this operational problem and 

identify policies that would enable improved efficiency for airlines and reduced environmental 

impacts in flight departure operations. 

Given these observations, in this paper we seek answers to the following research questions: 

Given the set of aircraft scheduled to arrive and depart at an airport, which aircraft should be allowed 

to push back from the gate, which aircraft should be allocated a gate, and which aircraft should be 

sent to the runway from the metering area? Furthermore, from a strategic planning perspective, what 

is the optimal metering area capacity to be used in implementing departure metering operations? We 

develop a dynamic programming framework to answer these questions. In addition, numerical 

analyses are also presented to quantify the potential savings that can be achieved through the 

proposed optimal departure policies. 

2. Contributions and Significance of Research 

The main contributions of this paper are as follows: (1) This is the first paper that captures the 

stochasticity in departure metering operations and derives optimal policies to improve efficiency for 

airlines and the society; (2) Unlike most of the existing studies on departure operations at airports, we  

address some additional decisions that can create value, such as controlling the departure flow 

through the use of a metering area; (3) Our study also adds to the limited literature on stochastic 

modeling of departure operations, as arrivals and pushback delays are captured under a stochastic 

optimization framework; (4) Several practical departure policies are introduced which can be easily 

implemented by air traffic controllers without referring to computerized tool or advanced training, 

and still produce considerable savings compared to current practices.  

3. Modeling Approach 

Our modeling is based on a finite horizon Markov decision process (MDP) formulation of the 

problem, for which we obtain both exact and easy-to-implement heuristic solutions. As part of the 

model description, we first provide the following additional information on the operational 

framework and the corresponding decision process.  

Consider the following decision problem faced by an airport controller. At a given decision 

epoch, the controller observes the amounts of aircraft scheduled to arrive, waiting at the taxiway to 

be assigned a gate, at gates, at the metering area, on the runway, and planned to depart, respectively. 

We define the above information as the distribution of aircraft at the airport, which is consistently 

changing with the air traffic flow. For a new arrival at the airport, the controller either guide it to stay 

at the taxiway if there is no available gate at the moment or move it to a gate once there is an empty 

gate. Note there might be a number of aircraft in a queue waiting for gates when the gates are fully 

utilized. For the aircraft held at gates which are ready to pushback, the controller has three options: 

continue staying them at the gate, move them to the metering area, or direct them to join the 

departure queue directly. For the aircraft at the metering area, the controller can either direct them to 

the runway or continue staying them at the metering area if there is runway congestion. For the 

aircraft on the runway, the controller will schedule their departure once there are departure slots 

available. During this process, the controller can determine the number of aircraft to be pushed back 

to the metering area from the gates and the number of aircraft to be directed to the runway from the 
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metering area to achieve the desired/target distribution of aircraft for the next decision epoch. 

Different actions can incur different fuel, environmental and other relevant costs. However, there are 

several uncertain factors affecting the traffic flow, such as the weather and human factors. In this 

paper we consider primarily two stochastic issues, the number of actual arrivals and the number of 

actual pushback aircraft. Factors such as the number of scheduled departures are considered 

deterministic. Due to the uncertainty involved, the realized distribution of aircraft at the airport for 

the next decision epoch can be different from the target.  

 Within the dynamic programming framework used, for modeling purposes, we discretize the 

time horizon into discrete time periods, each with a fixed duration. We also assume that the 

controller observes the distribution of aircraft and make corresponding decisions at the beginning of 

each period. The state set in each stage is defined as the distribution of aircraft at the airport before 

taking any actions, i.e. the number of aircraft waiting for gates, the number of available gates, the 

number of aircraft at the metering area, and the number of aircraft on the runway. The action set is 

defined as the desired or target distribution of aircraft at the airport for the given period to reduce 

congestion and ensure efficient flow of operations. More specifically, the controllers can make the 

following two decisions to affect the allocation of aircraft, namely the number of aircraft to be 

pushed back to the metering area from the gates, and the number of aircraft to be directed to the 

runway from the metering area.  

The transition probabilities are modeled and determined based on the probability distribution for 

the number of arrivals in a given period for a given arrival rate and the probability distribution for the 

number of aircraft to pushback in a given period as discussed in Sölveling et al. (2011). The cost 

structure is based on the costs of holding aircraft at different facilities, which include cost of holding 

on the taxiway, cost of holding at gates, cost of holding at the metering area and runway holding cost. 

The overall objective in this MDP representation is to find an optimal mapping of states to target 

departure metering policies for each decision epoch. The optimal policies can be obtained by solving 

an optimality equation numerically through backward induction. 

While the optimal policies identified through the solution of the optimality equations above 

provide the lowest cost policies, air traffic controllers may find these policies difficult to implement 

as they are based on numerical solutions and a computerized tool which is necessary for overall 

implementation. In this paper we introduce four easy-to-implement departure metering policies as an 

alternative tool, including MaxiRunway policy, N-Control policy, Low-Cost policy and (s, S) policy. 

We then implement a comparative analysis between these practical policies and the optimal 

numerical solutions. We also quantify the potential value created by these policies over current 

practices. 

In addition, we identify the optimal metering area capacity using marginal analysis to minimize 

expected overall costs from a strategic perspective.  

4. Summary of Major Results 

In this paper we study optimal departure metering policies at airports from both tactical and 

strategic perspectives. We develop a stochastic dynamic programming framework to identify such 

optimal policies, while also studying some near-optimal practical policies for airlines from a tactical 
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perspective. We implement a comparative analysis between four practical policies and the optimal 

numerical solutions, and find that the (s, S) policy can produce considerable savings compared to 

current practices. We also look at how the optimal departure metering policies change with respect to 

different state variables. Furthermore, we introduce an enumeration procedure to identify the optimal 

capacity for the departure metering area.  

Using the developed optimal policies, we perform extensive simulations based on the departure 

implementation at the Detroit Metropolitan Wayne County Airport (DTW). Our findings show that a 

capacity of 7 aircraft is the best departure metering configuration at this airport. Savings for airlines 

due to such policies can be around $30.8 million if these policies are adapted by top ten major 

airports in the U.S. 

Through our analysis, we find that utilization of the proposed optimal policies could add to the 

value of departure metering procedures and improve overall efficiency by around 14-20% over the 

current practice as described by Nakahara et al. (2011). Given the need for smooth and integrated 

surface operations by airlines and airports, the proposed optimal departure metering policies can add 

to the value of NASA's ATD-2 implementation by improving overall efficiency and sustainability of 

departure operations. 
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1. Introduction  

 

The modal choice problem has been investigated for many years, typically under deterministic travel 

conditions; not many studies have considered the effect of travel time variability endogenously. The 

context of this study is about the commute choices of travellers from home to work between two travel 

modes: metro services with a fairly constant or predictable travel time versus taxi that faces congestion 

and travel time variability. When choosing between these two modes, travellers may consider comfort, 

travel time, travel time variability and monetary cost. Among them, travel time reliability/variability 

has been increasingly acknowledged as an important factor affecting travel choices, as evidenced that 

unreliable travel times can disturb peoples’ activities by causing unpredictable early or late arrival 

penalties (Batley and Ibáñez, 2012). Bhat and Sardesai (2006) made the early attempt to incorporate 

travel time reliability to modal choice in empirical experiments. They suggested that travel time as well 

as travel time reliability are both important indicators for level-of-service, which are highly valued by 

commuters, especially those with an inflexible work schedule. Li et al. (2010) addressed that people are 

willing to pay for improved travel time reliability. Chang (2010) proposed methods to evaluate travel 

time reliability in transport appraisals, which can be applied to multimodal research.  

 

However, little attention has been paid on studying the theoretical underpinning of travel time reliability 

in the mode choice problem, let alone the pricing strategy for taxi. Many questions remain to be 

answered. How do travellers trade between travel time reliability and pricing, which in turn will affect 

their mode choices? Under the context of heterogeneous travellers, who will choose the metro service 

and who will choose the taxi? This study aims to answer these questions from an analytical perspective. 

 

The structure of this abstract is as follows. The model assumptions and problem definitions are given 

in Section 2, first for the case of homogeneous travellers, then extended to the case of heterogeneous 

travellers. Due to page limitation, the results will be presented in the full paper.  

 

2. Problem formulation 

 

The problem is defined for N  travellers commuting between home and work every day during morning 

peak hour. They choose between taking the taxi or the subway. The advantage of the subway is its 

predictable travel time, with little variability and lower fare, albeit it usually takes a longer travel time. 

Besides, it is less comfortable due to crowdedness.  On the other hand, commuters taking cars have to 

endure congested travel time and travel time variability due to degradable road capacity and/or perhaps 

random demand. In this study, several assumptions are made to capture the travel behaviour and system 

performance: 

(A1) The designed capacity for the road is c , and the lower bound of the realized capacity is c . The 

probability distribution of the stochastic capacity c is known to all travellers, with the probability 

density function (PDF) ( )c . c  follows a uniform distribution within interval [ , ]c c . Therefore, 

1
( )

(1 )
c

c






.  

(A2) Travelers consider comfort, travel time, travel time variability and monetary cost in their choice 

mechanism. 

(A3) The travel time variability for the subway is zero. 

(A4) The waiting time and comfort loss of the subway is linear to the demand. 

(A5) The comfort loss of taking the taxi is zero. 
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(A6) The operation cost of the car is linear to the actual travel time. 

 

Previous researchers (e.g. Siu and Lo, 2008; Lo et al. 2006) has already derived the characteristics of 

travel time on a road with degradable capacity. Following their result, we adopt the bureau of public 

roads (BPR) link performance function: 

   0, 1

n

c
c

N
t N c t

c


  
   

   
  (1) 

where 
0t  is the constant free flow travel time on the road.   and n   are deterministic parameters. c  is 

the realized capacity on a specific day. The mean and variance of travel time can be derived as  
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2.1 Homogenous travellers 

 

We start with homogenous travellers who have the same taste parameters. Based on the above 

assumptions, the disutility of taking the subway can be written as: 

 1 2 5s s s sU N          (7) 

sN  is the number of travellers taking the subway. The first term 1 sN  represents the sum of waiting 

time cost and comfort loss, which are both linear to the demand sN  . 2  is the taste parameter for the 

mean travel time, which can be called the value of time (VOR). 5  is the taste parameter for the 

monetary cost, which can be called the value of money (VOM). s  is the travel time for taking the 

subway. According to (A3), there is no variability cost for taking the subway.  s  is the fixed monetary 

cost of taking the subway. 

 

The disutility of taking the taxi service is: 

  2 3 5c c c c cU t           (8) 
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c  and 
c   are the mean and standard deviation of travel time ct for taking the car. 3  is the sensitivity 

parameter of 
c , interpreted as value of reliability (VOR).  c ct  is the fee charged by the taxi service. 

The company can decide whether they charge a fixed fare every day or a variable fare according to the 

actual travel time on that day. We will discuss the two pricing scheme separately.  The comfort loss of 

taking a car is zero. 

 

For the taxi company, it aims to maximize the revenue. Scheme 1 is to charge a fixed fare every day. 

In equilibrium, all the travellers should have the same cost regardless of the mode they choose. Thus, 

the problem can be formulated as: 

    max max
c c

c c c c cE N t N
 

          (11) 

 s.t    1 2 5s s s sU N          (12) 

 2 3 5c c c cU            (13) 

 s cN N N    (14) 

   0s c cU U N     (15) 

   0s c sU U N     (16) 

 , 0s cN N    (17) 

In (11),   is the operation cost per unit time for the taxi service. Equations (9) and (10) demonstrate 

that  c  and c  are functions of cN . So the car company determines an optimal point between the 

market share and the profit they can gain from each commuter.  

For scheme 2, the company charges the fare by actual travel time. We assume that the fare and the 

actual travel time follows an implicit function of  c f t  ,  ' 0f t  . Substituting it into (11), we 

get the new objective function as:  

 
 

  
 

 max maxc c c
f t f t

E N f t t N E f t             (18) 

In equilibrium, the expected cost of taking a car should be the same as taking the subway. Equation 

(13) now becomes  

  2 3 5c c cU E f t             (19) 

The aim of the company is to find a charging policy to maximize its revenue. Now assume the optimal 

feasible fare of the first pricing scheme is 
*

c  . For each feasible solution of Scheme 2,  E f t   is a 

constant, we denote it as , . Substituting   ,E f t     into (11)-(12), it is easily seen that Scheme 1 

and Scheme 2 have the same expression. Therefore, the optimal feasible solution of Scheme 1 is also 

optimal feasible for Scheme 2 if and only if we manage the charging policy to have   *

cE f t     . 

This result shows that under the context of linear disutility function of monetary cost, there is no 

difference between the two pricing schemes.  

 

2.2 Travellers with same VOT and different VOR 
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Now suppose there are two kinds of travellers with same VOT but different VOR. We use 
31  and 

32

to denote the VOR of the commuters. For the first type, they take the variability into consideration (i.e. 

31 0  ), which is referred to as the risk-averse travellers. For the others, they don’t care about the 

travel time variability (i.e. 32 0  ), so they are risk-neutral ones. The number of risk averse and risk 

neutral travellers are 1N  and 
2N respectively. Denote the number of the first and second type of 

travellers taking the car as 
1f  and 

2f respectively. 
cC is the maximum cost for travellers choosing cars.  

Thus, the problem can be formulated as: 

  max
c

c c cN


    (20) 

 s.t    
1 2 5p p p pU N          (21) 

 1 2 3 5c c c cU            (22) 

 2 2 5c c cU         (23) 

 1 2 cf f N    (24) 

 
p cN N N    (25) 

   0p c pC C N    (26) 

  1 1 0c pC C f    (27) 

  2 2 0c pC C f    (28) 

 
1 2, , 0pN f f    (29) 

It is easily seen that  1 2c cC C for 0cN  . Therefore, risk averse travellers will first consider to take 

the subway. The result of this scenario will be beneficial for us to analyse the risk attitudes reflected 

by travellers’ choices. We will extend this scenario to consider heterogeneous travellers. When the 

discretization interval is small enough, it can approximate the case with continually distributed VOR. 

The results will be instrumental in understanding the interplay between different pricing strategies and 

travellers with different VOT and VOR.  
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Multi-Cycle Optimal Taxi Routing with E-Hailing

Xinlian Yu∗ Song Gao† Hyoshin Park‡ Xianbiao Hu§

1 Introduction

1.1 Motivation

Taxis play an important role in providing on-demand mobility in the urban transportation system.
Compared to other forms of public transportation, the advantages of taxis include speediness, pri-
vacy, comfort, door-to-door service and 24/7 operations. Traditionally, vacant taxis cruise on roads
searching for customers. In recent years, thanks to the advance of smartphone technology, e-hailing
applications (e.g., Uber, Lyft, and Didi) are widely adopted by the drivers to receive requests from
nearby customers. An occupied taxi usually takes a direct route to the customer’s destination, not
unlike regular commuters. However, there is no guarantee that the driver can find a new customer
after dropping off the previous customer at the destination. Vacant taxis cruising on roads not only
result in wasted gas and time for taxi drivers but also generate additional traffic in a city. Therefore,
how to improve the utilization of taxis is of importance to both taxi drivers and the society.

In an earlier study by the co-authors (Hu et al., 2012), a dynamic programming model of routing
vacant taxis was proposed to depict the decisions at intersections according to the passenger arrival
rate. However, the expected search time is only minimized for the next customer, which might be
inefficient in the long run. For example, driving to the airport might not minimize the search time
for the next customer, but it brings in a higher chance of a long trip for the next customer and thus
the profit is higher in a long period. For this reason, experienced taxi drivers would not simply
make their customer-search decisions depending on the current searching time/profit, but would
also consider the subsequent possible states that could be encountered. In this study, an optimal
taxi routing problem is investigated for a single taxi that accounts for multiple cycles of pick-up
and drop-off into the future.

1.2 Literature Overview

Since the early 1970’s, a large number of studies on taxis have been conducted. See Salanova et al.
(2011) for a recent review. Static or myopic taxi routing modeling and optimization is beyond the
∗University of Massachusetts, Amherst. xinlianyu@umass.edu
†University of Massachusetts, Amherst. sgao@umass.edu
‡University of Massachusetts Amherst. hyoshinpark@umass.edu
§Metropia. xb.hu@metropia.com
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scope of this study.
For modeling multi-period taxi services, Yang et al. (2005) presented a spatially aggregated

taxi service equilibrium model with endogenous service intensity. However its main purpose is to
understand the demand-supply interaction instead of improve taxi utilization. Wong et al. (2015)
developed a sequential logit-based vacant taxi behavior model predicting searching paths as a se-
quence of choices of adjacent zones. The destination choice is restricted to adjacent zones, while
an experienced driver chooses destinations over the whole network (e.g, going back to airports and
major business districts after dropping off customers in a remote residential area). Furthermore,
the search behavior model is based on zones and cells instead of the road network.

Table 1: Summary of selected literature
Problem Studies Model features

Equilibrium of taxi
supply and demand

Yang et al. (2005)
period-specific taxi customer demand as a
function of waiting time and taxi fare

Vacant taxi searching
behavior

Wong et al. (2015)
logit-based customer searching paths;
restricted to one searching trip

Taxi demand prediction Moreira-Matias et al. (2012) time series forecasting model
Qian and Ukkusuri (2015) geographically weighted regression (GWR)
Yuan et al. (2011)
Hwang et al. (2015)

mining historical GPS data through
machine learning

Non-myopic VRP Thomas and White (2004) One-stage look-ahead
Mitrović-Minić et al. (2004) double-horizon heuristic

Ferrucci et al. (2013)
rolling horizon heuristic;future requests
arrive in a time-space Poisson process

Models and algorithms developed for non-myopic vehicle routing problem (VRP) under un-
certainty with look-ahead policies and rolling horizons (e.g., Mitrović-Minić et al., 2004; Thomas
and White, 2004; Ferrucci et al., 2013) might provide insights for taxi routing problems in terms of
accounting for future unknown demand and efficient solution algorithms. It is however recognized
that the taxi problem is different. In a typical VRP, the service of a customer does not bring the
vehicle to another location, while a taxi does and the destination is not known until the request is
taken. This significantly increases the geographic spread of taxi movements. In addition, a taxi
(without carpooling service) can serve only one quest at one time and a new request does not come
up until the old request is finished (unless a dispatcher is sending request during the previous ride).

Accounting for future states in taxi searching behavior requires sound models of geographic
and temporal distributions of taxi demand. Several methods have been proposed to predict taxi
demand distribution (see ”Taxi demand prediction” in Table 1), which could be combined with the
optimal taxi routing model.

1.3 Contributions

Define a trip cycle consisting of the vacant taxi trip from the destination of the previous occupied
trip to the pick-up place for the next customer, and the subsequent occupied trip from pick-up
place for transporting the customer to his/her destination. A non-myopic, multi-cycle taxi routing
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optimization problem is studied with the following intended contributions:

• The optimization problem takes into account future states by considering both the intensity
of future customer demand and their destinations over multiple cycles.

• Instead of zone/cell-based movements, the routing decisions are based on the physical road
network, which enables potentially better understanding of taxi drivers’ behaviors as well as
more practical recommendations for taxi drivers.

• Practical implementations are proposed to solve the multi-cycle optimal taxi routing problem
in a reasonable time. The solution will be compared with observed searching behaviors from
GPS trajectories in a mega city to demonstrate the advantage of the multi-cycle approach.

2 Formulation of the Multi-Cycle Optimal Taxi Routing Problem

2.1 Taxi Movements in a Network

A taxi travels in a traffic network G = (N,A). N is the set of nodes and A the set of links.
There is at most one directional link, a, from the source node i to sink node j. A(i) is the set of
downstream links of i, andB(j) the set of upstream links of j. The taxi is actively searching for, or
carrying passengers during a time horizon with discretized time intervals {0, 1, . . . ,M − 1}. For
simplicity, link travel times are assumed time-independent and deterministic, but the formulation
can be generalized to account for time-dependent and/or stochastic link travel times. The length of
a time interval δ is equal to the shortest link travel time, and travel time for link a is represented as
a non-negative integer, τa = bxa/δc, where xa is the original travel time for link a.

The routing problem is meaningful only when a taxi is for hire. The state of a taxi, s, is
described by node i and time interval t. The action set for state s is the set of outgoing links A(i).
For a given state s and action j ∈ A(i), two types of transition to a new state s′ could happen. 1)
The taxi is not matched with any passenger when traversing link a = (i, j), and s′ is associated
with node j. 2) The taxi is matched with a passenger when traversing link a, and s′ is associated
with the destination node of the passenger, k. By definition, any state associated with the last time
period M − 1 is a terminal state. To calculate state transition probabilities, the passenger matching
probability on a link (Section 2.2) and passenger destination probabilities (Section 2.3) are needed.

2.2 Passenger Matching Probability on a Link

Passengers arrive at link a following a one-dimensional space-time Poisson process with rate λa
per hour per mile. For modeling convenience, these are simplified as time Poisson processes at
nodes, and the arrival rate at node j (per hour), λj =

∑
a∈B(j) λala, where la is the length of link

a. Arrivals at different nodes are independent. In practice, demand rate λj is often approximated
by observed met demand rate. Statistical analysis can be carried out to build a predictive model
for the demand rate as a function of built environment variables (e.g., residential density, and
employment by business type such as hotel and nightclub), time of day, and weather condition
(Phithakkitnukoon et al., 2010; Moreira-Matias et al., 2012).
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When e-hailing is used, the nearest vacant taxi to a passenger gets matched to the passenger.
Vacant taxis around node n at any given point of time follow a two-dimensional spatial Poisson
distribution with density γn. For simplicity, hypothetical right-angle travel is assumed. For a given
node n, the probability of a vacant taxi r miles away (based on right-angle travel) being the nearest
vacant taxi is the probability of no vacant taxi in a square rotated at 45 degree centered at node n
with area equal to 2r2, namely,

Pn(r) = exp(−2γnr2). (1)

Consider a vacant taxi with e-hailing traversing link a. It gets matched with a passenger at node
h if a passenger arrives at node h during the traversal time τa and the vacant taxi is the nearest.
The matching probability, pa,h, is the product of the probability that a passenger arrives at node h
within τa and the probability that the vacant taxi is the nearest to node h, namely,

pa,h = (1− exp(−λhτa)) exp(−2γhL2h→a), (2)

where Lh→j is the right-angle distance from node h to link a, which can be approximated as the
distance to the middle point of link a. Note the pickup nodes can be restricted to a subset of the
nodes to model picking up along the roads without e-hailing.

2.3 Passenger Destination Probabilities

The probability of a passenger picked up at node h having node k as the destination, ph→k, can
be approximated by the observed fraction of passengers picked up at node h going to k. When no
passenger pick-up is observed at node h, the probability is undefined. To resolve this problem, the
study area is divided into zones such that any zone has strictly positive number of pick-ups. Let
node h be in zone H and node k in zone K. Assume each node in zone K has equal probability of
being the destination node, and the destination probability is

ph→k =


pH→K
mK

, ∀H 6= K
pH→K
mK − 1

, ∀H = K, ∀h 6= k

0, ∀h = k

, (3)

where pH→K is the probability of a passenger picked up in zoneH having zoneK as the destination
zone, and mK is the number of nodes in zone K. The equal probability assumption can be easily
relaxed.

2.4 State Transition Probabilities and the Optimization Problem

For a given state s = (i, t) and action a ∈ A(i) with a sink node j, the transition probability, pss′|a
with s′ = (i′, t′), is defined as follows:

pss′|a =

{
1−

∑
h∈N pa,h, if i′ = j, t′ = t+ τa∑

h|t′=t+τa+Tj→h+Th→i′
pa,h ph→i′ , if (i′ = j, t′ 6= t+ τa) or (i′ 6= j)

, (4)
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where Tj→h (Th→i′) is the shortest path travel time from node j to h (h to i′). In the first case, no
passenger is matched along link a, and the taxi arrives at the sink node j at time t + τa. In the
second case, a passenger from node h with destination i′ is matched, and the taxi arrives at node i′

after picking up the passenger from node h and carrying the passenger from h to i′, both following
shortest paths. The probabilities are summed over all possible h such that the arrival time at the
destination i′ is t′.

It follows that the immediate payoff of going from state s to s′ given action a can be written as
follows:

gss′|a =


−ατa, if i′ = j, t′ = t+ τa∑

h|t′=t+τa+Tj→h+Th→i′
(−α(t′ − t) + βTh→i′)pa,hph→i′∑

h|t′=t+τa+Tj→h+Th→i′
pa,h ph→i′

, if (i′ = j, t′ 6= t+ τa) or (i′ 6= j)
,

(5)
where α is the taxi operating cost per hour, and β is the taxi revenue per hour.

Let V (s) denote the optimal expected payoff starting from state s. The taxi driver chooses the
action at each state s to maximize the expected payoff that is the sum of the expected immediate
payoff and the expected downstream payoff, which is the expectation of the payoff over all possible
next state s′. The optimal solution is obtained by solving the Bellman equation (Bellman, 1957) as
follows:

V (s) =

 max
a∈A(i)

∑
s′

(gss′|a + V (s′))pss′|a, ∀s|t < M − 1

0, ∀s|t =M − 1.
. (6)

3 Case Study and Anticipated Results

We will evaluate our model using a large number of historical GPS trajectories generated by urban
taxis in Shanghai, China, in the month spanning September 1-30, 2014. Figure 1 reveals some
statistics of 13,544 taxicabs from 0:00 to 10:30am on a typical Monday, September 8, 2014. As
shown in Figure 1(a), the distribution of taxi occupancy rate (the quotient between the occupied
time and the whole working period) exhibits a bi-modal pattern with two peaks: 0-0.25 and 0.5-
0.75. The occupancy rate of taxi drivers varies widely and most taxi drivers have a pretty low
occupancy rate between 0 to 0.25. Figure 1(b) further shows the boxplots of occupancy rate over
time. During peak hours, the gap between the high-occupancy rate drivers and low-occupancy
rate drivers is less obvious than that during off-peak hours. More drivers can find passengers
easier during peak hours. However, it is also difficult to obtain a high occupancy rate due to the
increasing competition between drivers during peak hours. The occupancy rate during 2:30-7:30am
is in general low, yet more drivers could reach an occupancy rate of 1 during 3:30-5:30am due to
less competition, longer taxi trips and more experienced drivers who know the places where he/she
can pick up passengers quickly during this time.

The main challenge in solving the multi-cycle optimal routing problem in real-world networks
lies in calculating the cost-to-go with a large number of possible future states. Approximate Dy-
namic Programming (ADP) provides a potential tool for calculating the future impact of a current
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(a) Distribution of occupancy rate     (b) Occupancy rate over time 
 
 
 
 
 
Other parts of the world, such as China 
and India, are experiencing rapid rates of urbanization and 
especially motorization as new wealth creates increasing demand 
for personal mobility (Purcher et al., 2007). 

 

There are opportunities for extracting new capabilities at the 
convergence of transportation and information technologies. Sensor 
technologies, embedded in vehicles and infrastructure, carried 
by travelers or remotely positioned, and connected via wireless 
communication, are generating massive amounts of fine-grained 
data about transportation systems and their dynamics. Geographic 
Information Science (GISci) and Geographic Information Systems 
(GIS) provide theory and methods for managing, exploring, 
analyzing and sharing georeferenced spatio-temporal transportation 
data and information. Social media can allow more meaningful 
interactions among travelers, managers and stakeholders. The potential 
for a data-driven revolution in planning, management and 
use of transportation systems is inspiring some to call for a new 
interdisciplinary field, computational transportation science, encompassing 
transportation, computer and geographic information sciences 
(Winter et al., 2011). In addition, private sector companies 
such as IBM envision a smarter planet through by making 
systems more instrumented, intelligent and interconnected 
(www.ibm.com/smarterplanet). 

 

 

Big Data has arrived in transportation and will get much bigger 
soon. To what end should we direct these streams of data and computations 
in order to resolve or mitigate the challenges facing 
transportation systems in the 21st century? 

Figure 1: Statistics on the occupancy rate

decision. ADP approximates the value function based on some methods (e.g. reinforcement learn-
ing, Q-learning and simulation), and ultimately avoids the evaluation of all possible states. To
further cope with the scalability problem, a rolling horizon approach where the planning time hori-
zon is limited in length (e.g, a few hours long) will be also be investigated. We will show that
the multi-cycle optimization problem can be solved in a reasonable time, while providing signifi-
cantly better solutions in the long run by comparing the model results against observed searching
behaviors.
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A critical indicator for most public transportation agencies is to increase the number of 
passengers in the system. To achieve this goal, the level of service offered to the users must be 
maintained or improved. This is very hard, since traffic congestion is normally increasing which 
affects bus travel times. As a result, bus travel times are higher and less reliable, which makes 
harder to predict travel times and avoid bunching. Being able to accurately predict bus travel speeds 
and update this prediction with real-time information could improve the quality and reliability of the 
information given to users, since it helps them to plan their routes, and to reduce the anxiety of 
waiting without knowing the time of arrival of their bus. In addition, for operators, better speed 
predictions increase the effectiveness of control schemes to avoid bunching and allow them to 
optimize the number of buses required to operate a service. 

Machine learning models have seized high popularity because of their good results and 
ability to easily adapt to the requirements of the modeler. As a consequence, several studies have 
been reported in predicting travel speed/time of buses. There are many models of statistical learning 
to predict bus travel speeds, and there is no consensus regarding the best method. In this paper, we 
work with three models that have been widely used in this field: (i) Multiple Linear Regression 
(MLR), (ii) Support Vector Machines (SVM) and (iii) Neural Networks (ANNs). SVM and ANN 
were chosen because they are methods that have reported very good results, see for example Jeong 
& Rilett (2004), Yu, Lam & Tam (2011), and Zheng, Zhang & Feng (2012). However, SVM and 
ANN are black box models, in which is difficult to understand the impact of each input variable in 
the predictions. This is why MLR was incorporated, since although it has not reported as good 
results as the other two (Jeong & Rilett, 2004; Yu et al., 2011), MLR models are easy to calibrate 
and interpret. Thus using MLR, we can clearly see the contribution of each of the input variables in 
the predictions. 

This paper has two objectives. The first one is to compare the performance of three 
proposed models Multiple Linear Regression, Support Vector Machines and Neural Networks, in 
comparison to two benchmark models that use averages of historical and real-time information. To 
do this, real data from three services of buses of the city of Santiago, Chile are used. The second 
objective seeks to determine which explanatory variables are more or less significant in the outcome 
of the model. Julio et al (2016) propose a series of models to predict bus speeds in the city of 



Santiago, however, they only use as input variables data from the bus position reported every 30 
seconds by GPS of each bus to make the predictions. Our analysis includes variables such as bus 
speed reported by GPS, passengers boarding and alighting at different bus stops, bus load, 
infrastructure and environmental factors such as weather conditions. 

Figure 1 and Table 1 present a description of the services used to study the performance of 
different predictive models. Service 212 is a classical trunk service with most of its route in 
segregated corridors and exclusive lanes, service 203 is also a trunk service with have only half of 
its route in segregated corridors and exclusive lanes, and service C04 is a feeder service with a 
shorter route and smaller buses running in mixed traffic without priority. 

 

Figure 1 -  1. Map of Services Studied 212, 203 and C04 

 

Service Direction Total Length 
(Km) 

Average Speed 
(km/hr) 

Average 
Headway (min) 

Average Distance 
between Stops (m) 

212 Outbound 28 22.3 7.3 350 

203 Outbound 30 21.9 5.6 315 

C04 Inbound 12 20.8 17.7 270 

Table 1. General Characteristics of the Services 212, 203 and C04. 

Tables 2 to 4 show the results obtained by the different models when predicting bus speeds 
in the three services studied. In terms of RMSE ANN is the best model. Even though MLR gets 
slightly worse results, on average 0.2% worse, MLR models are easy and fast to calibrate, so we 
believe that they should not be ruled out as alternative if you consider that in a system such as 
Santiago there are more than 350 lines, and twice as many services (DPTM, 2013).  

 



 HB RTB MLR ANN SVM 

RMSE (km/hr) 6.95 6.12 5.47 5.46 5.57 

MAPE (%) 20.42 15.39 17.14 17.19 16.35 

Table 2. Performance measures for 212-outbound service 

 HB RTB MLR ANN SVM 

RMSE (km/hr) 7.05 6.37 5.78 5.76 5.85 
MAPE (%) 21.28 16.91 18.79 18.73 17.75 

Table 3.  Performance measures for 203-outbound service 

 HB RTB MLR ANN SVM 

RMSE (km/hr) 5.62 4.98 4.42 4.40 4.51 
MAPE (%) 18.81 13.63 14.65 14.35 14.40 

Table 4.  Performance measures for C04-inbound service 

 

In the three bus services analyzed, the model that showed the best results, in terms of the 
RMSE is Neural Networks, followed by Multiple Linear Regression and then by the Support Vector 
Machines. In all cases, machine learning models exceeded benchmark models, with a performance 
that varies between 10% and 25% decrease in the error. These results highlight the value of using 
real-time information and machine learning methods to improve the accuracy of predictions. 

Regarding the explanatory variables involved, we concluded that only speed variables have 
a relevant impact, whilst the addition of the other analyzed variables only had a minor effect (less 
than 2% reduction of errors). It seems that speed variables have implicit, in their value, the effect of 
the other variables, such as demand, infrastructure and environmental factors. 
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A careful planning of public transport operations is the key aspect of a successful commuting and trans‐

fer system. In the last decades we have seen significant progress in network design, route planning, 

and timetabling and crew rostering as well as delay and disruption management. All these approaches 

have led to an increase of efficiency in the provided daily operations of commuter service providing 

companies. 

The planning of operations contributes to keep costs on an acceptable level in order to cope with short 

and limited budgets. These budgets are mainly provided by two sources. First, transfer payments are 

received  from  service ordering authorities  like municipal or  regional administrations.  Second,  cus‐

tomer revenues from ticket sales form the second source of incoming money for a commuter operator.  

Transfer payments are often coupled with the provided services and their actual reliability. Here, the 

operations planning is adequate to contribute to reliable services that protect the income of the ser‐

vice providing companies from the transfer payment. However, this part of income is typically fixed 

and cannot be increased due to appropriate planning. 

With respect to the increase of the total budget the increase of the revenues from sold tickets seems 

to be a good  idea.  In some application contexts  like the airline business, tourism transport or  long‐

distance  train  services  revenue management  techniques  like price discrimination, capacity control, 

overbooking or dynamic pricing have proven to be able to contribute to the generation of additional 

revenues. Here, the central mechanisms behind the aforementioned techniques are (i) the estimation 

of the maximal willingness to pay of an individual customer and (ii) the acquisition of the major part of 

the customer’s surplus by setting an individual price for each sold ticket.  

In the commuter business, the implementation of such approaches is impossible. It is therefore inter‐

esting to  identify possible planning approaches that enables a service proving company to raise the 

amount of  sold  tickets and/or  the gained  revenues  from  the  ticket  fare. This presentation aims at 

providing initial insights into ideas to enable revenue planning in the commuter business. 

A commuter ticket, independently whether it is a single trip ticket or a period ticket, is the „product“ 

sold by a public transport company. As observed for the manufacturing of material products, the def‐

inition of such a product requires several preparatory steps. Although there is no „common theory“ 

documented  in the  literature, one can group the decision tasks associated with the specification of 

offered commuter tickets into three categories („layers“) which have to be executed consecutively.  

The first step is the definition of fare zones. A set of fare zones partitions the complete service area 

into portions (the fare zones). For each origin‐to‐destination trip  in the covered service area the  in‐

volved (e.g. visited) zones are used to determine the money a traveler has to pay to the service pro‐

vider for this trip. Several papers discuss mathematical models for fare zone definition tasks. These 

models are identified as quite complex so that sophisticated algorithms are needed to identify appro‐

priate fare zones. 



The second step  is the ticket portfolio compilation. This decision problem addresses the task which 

tickets are offered to the customers. A ticket gives the traveler the right to travel to a certain extent 

and/or for a certain time in the complete network or in a specific part of the service network. Typically, 

the allowed part of the network is expressed by listing a subset of the zones determined in the fare 

zone definition step. In the literature, we found some papers that evaluate the offered ticket portfolio 

but to the best of the author’s knowledge, there are no papers addressing the planning of the ticket 

portfolio composition. 

The third and final product specification step is ticket pricing. Here, a price is assigned to each ticket 

contained in the ticket portfolio. The major challenges in commuter ticket pricing are (i) political and 

social needs must be considered (ii) price sensitivity of customers who will not buy a too expensive 

ticket due to alternative modes of transport (iii) limited transport capacities that do not allow a too 

low ticket price and (iv) to ensure the consistency between prices assigned to different tickets, e.g. a 

week ticket must not cost more than seven times the price for a one day ticket. We find some papers 

that provide and evaluate models to identify adequate fares for tickets in a portfolio. 

After having structured the area of product specification in urban and regional public transport it turns 

out that there are several contributions to the planning of fare zone systems (the first layer). Further‐

more, several contributions to the determination of fares for offered tickets are available (the third 

layer). However, more or less nothing is contributed to the portfolio planning for tickets in commuter 

systems. Therefore, there is a research gap associated with the second layer.  

In order to start closing the detected research gap we propose mathematical optimization models that 

support the planning of optimal ticket portfolios to be offered by commuter agencies. In these models, 

the decisions to be made correspond to the selection of possible tickets for inclusion into a ticket port‐

folio. Within these models we test different planning goals with respect to their appropriateness and 

the need to establish necessary constraints. Furthermore, we investigate the influence of restrictions 

imposed in order to make the resulting ticket portfolio as easily understandable for customers.  

After we have proven the suitability of the initial models we propose several real‐world‐borrowed ex‐

tensions and modifications. In particular, we incorporate a time‐based price discrimination scheme. It 

enables the  introduction of peak time tickets as well as  low demand period discounted tickets. The 

proposed models are evaluated within computational experiments. 

The proposed decision models represent a first approach to equip commuter agencies with a decision 

support tool for the compilation of the „best fitting“ ticket portfolio. Nevertheless, a lot of issues as 

well as mechanism we are observing in commuter system ticket portfolios are still uncovered. Among 

these issues, we want to refer to multi‐trip tickets and season tickets (daily, weekly, monthly or annu‐

ally) as well as special purpose tickets for the elderly, handicapped or persons with low income. Trans‐

ferability issues that allow the transfer of a ticket between different customers as well as the allowance 

of free rides for accompanying persons represent other important but still unsolved challenges in the 

commuter ticket portfolio compilation. 
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Abstract

The proliferation of smart cards in public transportation has paved the way for successful

implementation of two prominent discount policies: pass programs and loyalty programs.

While pass programs have been around as early as the 1970s, loyalty programs are only now

gaining unprecedented popularity in public transportation. In a loyalty program, riders get

a discount on their fare if they complete a given number of trips within a time period (e.g.,

a month). Our review of several mass transit agencies shows that transit agencies are not

unanimous in their choice of discount policy. While some offer only the pass program, others

offer the loyalty program, and a few offer both. In this paper, we derive the optimal pass

and loyalty program, and we investigate if one is superior to the other in terms of social

welfare and profit. We find that each program has a unique impact on the transit agency.

The pass program is superior to the loyalty program for public transit agencies because (i)

it offers a higher social welfare, and (ii) social welfare and profit are maximized at the same

pass price, thus indicating that agencies do not sacrifice profit for social welfare. The loyalty

program, on the other hand, is beneficial for private agencies such as Uber and Lyft because

it generates a higher profit than the pass program when riders have more non-mandatory

than mandatory trips. We develop a simulation model to account for several sources of

uncertainty including user heterogeneity. The simulation model validates our earlier findings

from the analytical expressions and provides several insights as well.
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1. Introduction and motivation

Discount programs have gained unprecedented popularity in public transportation as they

are known to improve rider convenience and operator profitability. As early as the 1970s,

transit agencies have offered pass programs that grant riders unlimited trips for a given

planning period (e.g. a month). Pass programs are known to decrease auto use, improve

accessibility, and reduce passenger boarding time by up to 25% (Lachapelle and Frank, 2009;

Cervero, 1990). In addition to pass program, the proliferation such fare payment technologies

as smart cards has paved the way for more sophisticated discount policies including loyalty

programs (Li et al., 2009; Pelletier et al., 2011; Chow, 2014). Loyalty programs offer riders

a discount on their transit fare if they complete a predefined number of trips within a given

period of time (e.g. a month). For example, PRESTO, a smart-card fare payment company

in Canada, offers riders a 87.75% discount if they make more than 36 trips per month via

Go-Transit (i.e., any trip beyond the 36th trip is discounted) (Go Transit, 2016). It is not yet

clear if pass programs are superior to loyalty programs or the other way around. A synopsis

of current transit agencies in Ontario, Canada, shows that agencies are not unanimous in

their choice of discount policy. As an example, Table 1 shows that Brampton Transit is

adopting a pass program, whereas MiWay is adopting a loyalty program, and Burlington

Transit is implementing both. The motivation of this study is to investigate which discount

policy is ideal under various operating conditions. We find the optimal design of each policy

and examine their impact on social welfare and profit.

2. The model

2.1. Problem setting

Consider a homogeneous group of riders where each rider makes m mandatory and n non-

mandatory trips during a given planning horizon (e.g. a week or a month). Mandatory trips

are trips made by travelers in the absence of any discount policy and non-mandatory trips

are those that are potentially made when a discount is provided. In the absence of a discount

program, each rider pays a fare of f [dollars] per ride and receives a marginal utility per

trip. The mandatory trips, compared to the non-mandatory trips, yield a higher marginal

2



Table 1: Discount programs of Canadian public transportation agencies. Monetary values are in Canadian

dollars. Entries were retrieved from agency websites.

Agency Fare per trip Pass Program Loyalty Program

Hamilton Street Railway $3.00 $ 101.20 / month free after 11 trips per week

Burlington Transit $2.70 $97.00 / month free after 36 trips per month

Oakville Transit $2.80 $115 / month free after 35 trips per month

MiWay, Mississauga $2.90 - free after 12 trips per week

Go Transit $5.30 - 87.75% discount after 36 trips per month

Brampton Transit $2.90 $120 / month -

OC Transpo, Ottawa $3.00 $105.75 / month -

Durham Region Transit $3.05 $115 / month planned

Toronto Transit Commission $2.90 $141.5 / month planned

York Region Transit $3.40 $140.00 / month planned

utility because they are valued more by riders. The marginal utility function is denoted by

u(t) and presented in Fig.1. In this figure, the trips are laid out on the x-axis in the order

of their marginal utility so that the m mandatory trips appear before the n non-mandatory

trips. We assume in Fig.1 that the marginal utility of the mth (final) mandatory trip is f

[dollars] (i.e., u(m) = f). This implies that when no discount is offered, each rider makes

only m trips during the planning horizon. We also assume that u(t) is linearly decreasing,

although this assumption does not pose a serious restriction.

m 𝑚+ 𝑛

f

M
ar

gi
na

l u
til

ity
  u

 (t
) 

Number of trips  𝑡

Equilibrium point where 
marginal utility is equal to the 
fare

Figure 1: Marginal utility function.
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2.2. The pass program

When the pass program is offered, riders can purchase a pass for a price of p [dollars]

which grants access to unlimited free rides during the planning period. As pass owners pay a

one-time fee (per planning period), they make as many trips as possible until they no longer

obtain any positive marginal utility. Hence, the new equilibrium point occurs when u(t) = 0,

which happens at t = m+ n. Thus, pass owners have an economic incentive to complete all

of their mandatory as well as non-mandatory trips. By completing their n non-mandatory

trips, riders obtain an additional net utility equal to nf/2 which is depicted as a gray triangle

in Fig. 2. Rational riders would only purchase a pass if their additional utility, nf/2, minus

the cost of the pass, p, is larger than the cost they would incur if they did not purchase a

pass (in which case they would pay mf [dollars] for m mandatory trips).
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for pass-owners
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where marginal utility 
is zero
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Figure 2: Marginal utility under the pass program.

2.3. The loyalty program

When the loyalty program is offered, riders that complete a total of l trips (“l” represents

loyalty trip threshold), have to only pay αf [dollars] (0 ≤ α ≤ 1) for the remainder of their

trips in the planning horizon. The economic incentive of riders here is to complete their l

trips so that they get a discount, α, on the rest of their trips. This loyalty program represents

a single-tier structure (Kumar and Shah, 2004) where the threshold l is intuitively chosen to

be larger than m. Otherwise, if l ≤ m, riders get a discount on (mandatory) trips that they

would have completed regardless of any loyalty program.
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Riders who wish to enter the loyalty program first have to incur an additional cost of

completing l − m trips as shown in Fig. 3. When making each trip t, for m < t ≤ l, the

riders incur a cost (equal to f) that is higher than their marginal utility. This cost in total

is equal to (l − m)f −
∫ l
m
u(t)dt which is presented as a light-shaded triangle (upper-left

triangle) in Fig. 3. After reaching the (l)th trip, the riders begin to see additional benefit

from the loyalty program which is presented in Fig. 3 with a dark-shaded triangle (lower-

right triangle). According to the geometry of the triangles in Fig. 3, the riders make a total

of t = m + n(1 − α) trips where the marginal utility, u
(
m + n(1 − α)

)
, is equal to the

marginal cost, αf . The following lemma remarks the conditions required for a rider to enter

the loyalty program.
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marginal utility equals 
marginal cost for each rider

Figure 3: Marginal utility under the loyalty program.

Lemma 1. Riders enter the loyalty program only if l ≤ m+ (1 − α)n/2.

Proof. For riders to enter the loyalty program, the dark triangle in Fig. 3 (i.e., additional

rider utility) has to be larger than the lighter triangle (i.e., additional rider cost). Hence, a

rider only enters the loyalty program if f(l −m) −
∫ l
m
u(t)dt ≤

∫ m+n(1−α)
l

u(t)dt− fα
(
m +

n(1 − α) − l
)

which is equivalent to l ≤ m+ (1 − α)n/2.
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1. Problem Background 

The Last Mile Problem (LMP)—that is, the design and provision of travel service from a public transpor-

tation node to a passenger’s final destination—has attracted growing attention in recent years. The Last 

Mile Transportation System (LMTS) serves a public transportation node, such as a rapid transit metro sta-

tion at which trains discharge passengers. Passengers’ final destinations (homes, workplaces, public insti-

tutions, etc.) are spatially distributed in the urban area (or the last mile region) served by the node, and a 

fleet of vehicles is available to transport each passenger to her final destination. The routes and schedules 

of LMTS vehicles are flexible, and can adjust to specific last mile service requests. 

Any passenger needing last mile service is required to provide advance notice to the LMTS of her 

impending arrival at the alighting station and her specific final destination. Once this information is received, 

the LMTS assigns her to one of the vehicles in the LMTS fleet, plans the vehicle’s route so that it includes 

a stop at her destination, estimates the vehicle’s departure time, and notifies her accordingly. Once all of 

the passengers assigned to a vehicle are on board, the vehicle executes a delivery route with stops at each 

passenger’s destination and returns to the station to pick up passengers for its next delivery tour. Detailed 

LMTS settings for the area around the last mile region of one metro station can be found in Wang and 

Odoni (2014). 

We study LMTS pricing with multi-type passengers—adults, senior citizens, children, and students. 

Given each type’s last mile service demand in each last mile region, the geometric route configuration and 

corresponding vehicle’s service travel time, discounts for specific passenger types, vehicle capacity, and 

cost, we propose and solve a constrained nonlinear optimization problem to determine the price for each 

passenger type and the service fleet size (number of vehicles) in each last mile region to maximize the social 

welfare generated by LMTS.  

Our model is numerically implemented by using real data from Singapore. We show that by requiring 

the LMTS designer to offer discounted prices to special groups of passengers—senior citizens, children, 

and students—the optimal annual social welfare gained by implementing LMTS countrywide relative to 

mailto:yiwei_chen@sutd.edu.sg
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the fraction of Singapore GDP contributed by the Singapore public land transportation service industry is 

17.4%. We analyze a counterpart LMTS in which the LMTS designer sets the identical price for all types 

of passengers. We find that in the absence of price discounts for special groups of passengers, social welfare 

undergoes almost no change. Consumer surplus for LMTS passengers in special groups, however, suffers 

significantly. 

 

2. Models 

Consider a city that plans to implement an LMTS at a set of metro stations indexed by 1, … , 𝐽. There are 𝐼 

types of passengers, indexed by 1, … , 𝐼, who take trains and, potentially, use the LMTS. Trains dynamically 

arrive at station 𝑗 over time. The inter-arrival time between two consecutive arriving trains is assumed to 

be a constant, denoted by ℎ𝑗. Upon each train’s arrival, 𝑁𝑖
𝑗
 of type 𝑖 ∈ {1, … , 𝐼} passengers are discharged. 

We assume that 𝑁1
𝑗
, … , 𝑁𝐼

𝑗
 are independent random variables. We denote by 𝜇

𝑁𝑖
𝑗 and 𝜎

𝑁𝑖
𝑗

2  the mean and var-

iance of 𝑁𝑖
𝑗
, respectively.  

The LMTS designer aims to determine the price 𝑝𝑖 for every type-𝑖 passenger who uses the LMTS. The 

price for each passenger type-𝑖, 𝑝𝑖, is identical at all stations that are in the LMTS. The LMTS designer will 

also determine the capacity of vehicles used for last mile service, 𝑐, and the number of vehicles that provide 

LMTS at each station 𝑗, denoted by 𝑚𝑗. Each vehicle incurs per unit of time operating cost 𝑞. Service times 

for passengers who use the LMTS are independent and identically distributed. We denote by 𝜇𝑆
𝑁̂𝑗

 and 𝜎𝑆
𝑁̂𝑗

2  

the expectation and variance of travel time, respectively, of one service trip (serving no more than 𝑐 pas-

sengers) at station 𝑗 if 𝑁̂𝑗 passengers are willing to use the LMTS from each train. At each station 𝑗, we 

denote by 𝑁̂𝑖
𝑗
 the number of type-𝑖 passengers who are willing to use the LMTS at price 𝑝𝑖. We denote by 

𝑁̂𝑗 = ∑ 𝑁̂𝑖
𝑗𝐼

𝑖=1  the total number of passengers who are willing to use the LMTS. We denote by 𝜇𝑁̂𝑗 and 𝜎
𝑁̂𝑗
2  

the mean and the variance of 𝑁̂𝑗, respectively.  

Every passenger shares an LMTS vehicle with other passengers. A passenger who gets off the train and 

intends to use the LMTS is either (1) assigned to an idle vehicle that has an available seat or (2) directed to 

wait in a queue until a vehicle is available. Note that at each station 𝑗, the passenger expected waiting time 

for last mile service, 𝑤𝑗, depends on passenger destination topologies. Each passenger is endowed with a 

valuation (willingness-to-pay) for using the LMTS. For each passenger type 𝑖, passenger valuations are 

heterogeneous and supported on [0, 𝑣̅𝑖]. The fraction of passengers whose valuations are no greater than 𝑣 

is denoted by 𝐹𝑖(𝑣) = 𝑣 𝑣̅𝑖⁄ . We denote 𝑓𝑖(𝑣) ≜ d𝐹𝑖(𝑣)/dv and 𝐹̅𝑖(𝑣) ≜ 1 − 𝐹𝑖(𝑣).  

Prices are determined in two steps. In the first, the LMTS designer determines price 𝑝𝑖 ∈ 𝑃 for type-1 

passengers as the system’s benchmark price; the set 𝑃 consists of a finite number of feasible prices. In the 

second step, to address fairness concerns, for each other passenger type 𝑖 ∈ {2,· · · , 𝐼 }, the LMTS designer 

simply sets price 𝑝𝑖 to be a fraction, 𝜃𝑖 ∈ [0, 1], of the system’s benchmark price—i.e., 𝑝𝑖 = 𝜃𝑖𝑝1 for all 
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𝑖 ∈ {2,· · · , 𝐼 }. Fairness fractions {𝜃𝑖 ∈ [0, 1]: 𝑖 = 2, … , 𝐼} are determined before the LMTS designer as-

signs the benchmark price 𝑝1. Vehicle capacity 𝑐 is chosen from the set 𝐶 that consists of a finite number 

of positive integers. Social welfare is the summation of consumer surplus and vehicle profit over all stations.  

The LMTS designer determines the benchmark price 𝑝1, vehicle capacity 𝑐, and number of operating 

vehicles 𝑚𝑗 at each station 𝑗 to maximize the LMTS’s per unit of time expected social welfare SW(𝑤𝑗, 𝑝𝑖). 

Therefore, the LMTS designer solves the following constrained nonlinear optimization problem: 

max
𝑝1∈𝑃,𝑐∈𝐶,𝑚𝑗∈{0,1,..,𝑀}

SW(𝑤𝑗, 𝑝𝑖) 

subject to:                    𝑝𝑖 = 𝜃𝑖𝑝1, ∀𝑖 ∈ {2, … , 𝐼}                                                       (1) 

                  𝑤𝑗 = 𝑔(𝜇𝑁̂𝑗 , 𝜎
𝑁̂𝑗
2 ; destination features), ∀𝑗 ∈ {1, … , 𝐽}.             (2) 

                 𝜇𝑁̂𝑗 = ∑ 𝐸(𝑁̂𝑖
𝑗
) =𝐼

𝑖=1 ∑  𝜇
𝑁𝑖

𝑗 ∙ 𝐹̅𝑖(𝑝𝑖 + 𝛼𝑖𝑤𝑗)𝐼
𝑖=1 .            (3) 

                  𝜎
𝑁̂𝑗
2 = ∑ 𝑉𝑎𝑟(𝑁̂𝑖

𝑗
) =𝐼

𝑖=1 ∑  𝜎
𝑁𝑖

𝑗
2 ∙ (𝐹̅𝑖(𝑝𝑖 + 𝛼𝑖𝑤𝑗))2𝐼

𝑖=1 ,            (4) 

                          𝜌𝑞𝑢𝑒𝑢𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
𝜇

𝑁̂𝑗𝜇𝑆
𝑁̂𝑗

ℎ𝑗𝑚𝑗𝑐
< 1, ∀𝑗 ∈ {1, … , 𝐽}                              (5) 

 

3. Numerical Experiments 

We implement the pricing model described in our numerical experiments by using real data from Singapore. 

Singapore is a city-state with high utilization of public transportation, especially buses and metro services. 

We selected 10 sample metro stations which are located near residential areas well outside the downtown 

region. Distances between successive sample metro stations are longer than the distances between down-

town stations, which causes the last segment of a passenger's trip to be longer; this renders LMTS more 

valuable—even necessary—in the last mile region around these sample stations. The three main types of 

metro cards are for adults, senior citizens, and children/students (𝑖 = {1,2,3}). All other parameters are 

selected based on real settings. 

We carry out the following experiments and discussions. 

1. Impact of Prices on Social Welfare 

We explore the impact of LMTS price on social welfare. Given vehicle capacity 𝑐, for each possible LMTS 

price 𝑝1 ∈ 𝑃 we compute the optimal number of vehicles 𝑚𝑗 deployed to each station 𝑗 that will achieve 

the optimal price-dependent expected social welfare, denoted as SW∗(𝑝1). Therefore, the optimal price 

dependent social welfare SW∗(𝑝1) is the optimal value of the optimization problem. 

2. Impact of Vehicle Capacity on Social Welfare 

The optimal price 𝑝∗ declines as vehicle capacity increases. When a vehicle has more seats, due to economy 

of scale, the operating cost per passenger is reduced. In turn, the LMTS designer can charge passengers 
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cheaper prices. Vehicle capacity 𝑐 cannot be too small or too large. When 𝑐 is too small, delivering service 

to passengers requires the LMTS to operate too many vehicles. Therefore, a large number of vehicles leads 

to prohibitively high operating costs. When 𝑐 is too large, it is more likely that many seats on a vehicle for 

a given trip will be empty. Therefore, vehicle operating efficiency is too low. As a result, social welfare 

suffers when vehicle capacity is either too small or too large. 

3. Impact of Prices on Each Type of Passenger Consumer Surplus 

We analyze passenger behaviors and consumer surplus under the optimal LMTS price 𝑝∗. Roughly 90% of 

seniors, children, and students and half of the adults benefit from the LMTS. Therefore, our designed LMTS 

allows a majority of people—and, in particular, most of the people in special groups (senior citizens, chil-

dren/students)—to benefit from the LMTS. The consumer surplus a senior, child, or student receives from 

using the LMTS is more than three times an adult’s consumer surplus. Therefore, our designed LMTS can 

substantially improve people’s welfare; in particular, such improvements are significant for senior citizens, 

children, and students. 

4. Necessity of Offering Discounts to Passengers in Special Groups 

We explain why offering discounts to special groups of passengers is necessary. We consider a counterpart 

LMTS with no discount for any passenger type, i.e., 𝜃1 = 𝜃2 = ⋯ = 𝜃𝐼 = 1. In this counterpart, the LMTS 

charges an identical price, denoted by 𝑝′, which is the optimal price for all passengers. We report the opti-

mal price in the counterpart LMTS with identical prices; the relative change in the percentage of each 

passenger type that uses the LMTS from the primary LMTS with type-dependent prices to the counterpart 

LMTS with identical prices. If the LMTS designer does not offer discounts to special groups of passengers, 

the decrement in the percentage of special groups of passengers who use the LMTS is much higher than the 

increment in the percentage of adults who are willing to use the LMTS. In addition, by eliminating discount 

offers, the percentage of consumer surplus loss for a special-group passenger who uses the LMTS is much 

higher than the percentage of consumer surplus gain for an adult who uses the LMTS. 

5. Impact of Total Social Welfare Generated by the LMTS  

We analyze social welfare. The optimal annual social welfare gained by implementing LMTS countrywide 

relative to the fraction of Singapore GDP contributed by the Singapore public land transportation service 

industry is 17.4%. This result demonstrates that an LMTS can play a significant role in improving living 

standards in Singapore. Our paper provides empirical support for the necessity of launching LMTS in Sin-

gapore. 
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Abstract 

This paper analyzes a new fare-reward scheme for managing commuter’s departure time choice in a rail 

transit bottleneck, which aims to incentivize commuters’ shift of departure time to the shoulder periods of 

the peak hour to relieve queueing congestion at the transit stations. A framework of the rail transit bottleneck 

is provided and the user equilibrium with a uniform-fare and social optimum with service run-dependent 

fares are determined. A fare-reward scheme (FRS) is then introduced that rewards a commuter one free trip 

during the shoulder periods after a certain number of paid trips during the peak hour. For a given number 

of peak-hour commuters and ex-ante uniform fare, the FRS determines the free fare intervals and the reward 

ratio (the number of paid trips required for one free trip, which is equivalent to the ratio of the number of 

rewarded commuters to the total number of commuters on each day during the peak hour). The new fare 

under the FRS is determined so that the transit operator’s revenue keeps unchanged before and after 

introducing the FRS. Our study indicates that, depending on the original fare, FRS implements an optimal 

reward ratio up to 50% and yields a reduction of system total time cost and average equilibrium trip cost at 

least 25% and 20%.  

Key words: Rail transit bottleneck, Queueing congestion, Fare-reward scheme, User equilibrium 

1. Introduction 

Since Vickery’s bottleneck model (Vickrey, 1969), there has been a substantial stream of development of 

research in this area (Arnott et al., 1990; Laih, 2004; Lindsey et al., 2012). Unlike road traffic management, 

existing studies on transit bottleneck and queuing congestion are generally concerned with transit capacity 

choice, scheduling and fare pricing. Transit authorities usually adjust service frequency to accommodate 

variable passenger demand. Notably, applying the bottleneck model in mass transit, Kraus and Yoshida 

(2002) considered optimal fare and service frequency to minimize long term system costs. Various fare 

pricing schemes are considered on transit services in practice such as time-based differential pricing. For 

instance, the peak avoidance experiment in Netherland was implemented by rewarding commuters for 

travelling off-peak to reduce peak-hour ridership (Peer et al., 2016).  

A major consideration of the above demand management is to offer monetary compensation or other 

incentives at the expenses of the government or the transit operator. With limited source of funding, 

governments or transit authorities would rather charge a high fare to passengers than avoid revenue losses. 

In addition, the above anonymous fare-free strategy also results in excessive off-peak ridership with 

majority coming from untargeted passengers who would otherwise travel by other modes.  

To address the issues associated with the aforementioned demand management strategies for peak-hour 

transit operations; this paper introduces a controlled free fare reward scheme (FRS). Under the proposed 

FRS scheme, a commuter is rewarded one free trip during pre-specified shoulder periods after a certain 

number of paid trips during the peak hour. The planner can determine the rewarding ratio and periods to 
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minimize commuters’ trip costs and control the number of free commuters. In the meantime, it keeps the 

operator’s revenue intact, which is in the same spirit of the ‘revenue-neutral’ traffic congestion management 

schemes in the literature, such as the Pareto-improving congestion pricing and revenue-refunding scheme 

(Guo and Yang, 2010) and the tradable credit scheme (Nie and Yin, 2013; Yang and Wang, 2011). 

This work is organized as follows. First, we introduce the framework of urban rail transit bottleneck model 

with batch arrivals at work and the problems of user equilibrium with a uniform fare along with social 

optimum with service run-dependent fares. Second, the fare-reward scheme model is developed within the 

framework of the transit bottlenecks and seeks the optimal rewarding ratio and periods to minimize total 

commuting cost. Finally, we assess the system performances under the FRS in comparison with the original 

bottleneck situation. Sensitivity analysis of the results is conducted with respect to the initial system 

configuration and assumptions.  

2. Theory development 

2.1. Transit bottleneck and user equilibrium in the absence of FRS 

Consider a single origin and destination connected by an urban rail line where each train is running with 

capacity s  and headway h . Suppose a bottleneck occurs in peak hour, as shown in Fig. 1. During the peak 

hour, a given total number of N  commuters travel with M  uniformly service runs through the bottleneck. 

All trains through the bottleneck are indexed such that the service run 1 is the first train and M  is the last 

train through bottleneck. Departure time of each service run is denoted by mt , 1,2,...,m M . The peak 

period lasts for  1L M h  .   

. . .  

1 2 M3 M-1

h h . . . 

m

. . .  

*m

 

Fig. 1. The bottleneck of urban rail line 

Kraus and Yoshida (2002) considered the optimal long-run peak-hour transit services without late arrival 

and showed that all service runs are full of capacity at social optimum. With reference to their results, the 

number of service runs is determined by 

 
N

M
s

   (1) 

Equilibrium conditions require that commuters taking the first train and the last train do not incur queueing 

time and have identical trip costs consisting of only schedule delay costs and a uniform fare cost 0p  

(hereinafter, ‘0’ refers to the initial case). Namely, 

    * *

0 01m h p M m h p         (2) 

The individual average equilibrium trip costs (AEC) is given by 

 
 

 0 0AEC 1M h p


  
 

  (3) 

and the system total time cost (TTC) is given by 



 
 

 0TTC = 1M hN



 

  (4) 

2.2. The transit bottleneck model in the presence of FRS  

Consider an original uniform fare 0p  throughout the whole period in the urban rail transit bottleneck. 

Implementation of the FRS changes the original uniform fare structure according to the commuters’ 

entitlement of free ride. The peak hour of interest is divided into free fare interval (FFI) and uniform fare 

interval (UFI). UFI is the central period within the peak hour that spans an integer interval of runs  ,i j , 

including the preferred run *m  and with a uniform fare p , as shown in Fig. 2(a). FFI includes the two 

shoulder intervals before and after the UFI. After a certain number of paid rides, a commuter is entitled a 

free ride only during the FFI; a commuter without such an entitlement can choose either UFI or FFI at an 

uniform fare p , as shown in Fig. 2(b).  

(a) 

. . .  
1 i-1 Mi M-1

. . . 
j

. . .  
*m

p

FFI FFIUFI

. . .  . . .  

1 2 Mi M-1

. . . 
j

. . .  
*m

. . .  

p

(b)  

Fig. 2. Fare-reward scheme for (a) free ride commuters and (b) non-free ride commuters 

The following assumptions are first introduced: 

Assumption 1: The peak-hour operation of the rail transit system is under a long-term optimal configuration 

where all service runs are full of capacity.   

Assumption 2: The total number of commuters and the rail transit headway remain the same and the 

operator’s fare revenue keeps unchanged before and after implementation of the proposed FRS. 

To ensure that a commuter prefers to take the free ride during FFI, the FRS must meet the following design 

criterion: 

Design criterion 1: The FRS is designed so that the equilibrium trip cost in FFI with a reward (a free ride) 

is less than or equal to that in UFI without a reward. 

Design criterion 2: The FRS chooses a reward ratio   such that M  is an integer. 

Under the above assumptions and criteria, travel assignment and fare structure for commuters is showed in 

Fig.3. 
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Fig. 3. Fare intervals under FRS with design criteria 

Let the central UFI correspond to the service run interval  ,i j , as depicted in Fig. 3. From user equilibrium， 

   * *m i h p j m h p       , and design criterion 2, we readily have 



  1 1M j i      (5) 

The total time cost of UFI commuters at equilibrium is 

 
 

   
 

   
UFITTC 1 1 1 1j i h N M h N

 
                

  (6) 

Similarly, the total time cost of FFI commuters at equilibrium is 

 
 FFITTC = 1M h N


 

  
 

For given M  and 0p , the minimization problem of the system total time cost is given by  

        
0 1
min  TTC 1 1 1M h N M M h N


             (7) 

subject to 

  0 1Np Np    (8) 

    1 1 1M h p M h           (9) 

where  =     is a constant. Constraint (8) is imposed to ensure the operator’s revenue is unchanged 

before and after the FRS; inequality (9) is a mathematical statement of the aforementioned design criterion 

of the FRS. It is interesting to note that the FRS design problem reduces to a single variable optimization 

problem in terms of   under a commute equilibrium constraint. In what follows, for convenience of 

mathematical analysis, the reward ratio   is treated as a continuous variable for the optimization problem, 

 0,1 .      

3. Performance of fare-reward scheme  

One can analytically obtain the optimal solution of  , as summarized in Table 1. As shown in Table 1 and 

Fig. 4 and Fig. 5, from the perspective of both system performance and individual commute cost, the FRS 

performs the best at a reference original fare *

0 4p Mh , with an optimal reward ratio * 1/ 2  . At this 

*

0p  , the absolute and percentage reduction in both system total time cost (TTC) and individual average 

equilibrium trip cost (AEC) reaches the maximum:   

 *

0TTC= , = , AEC= , = ,  at  
4 4 4 4 5 4 4

MhN M Mh M Mh
p

M M

  
    

 
  (10) 

Where   is system efficiency defined as 0ΔTTC/TTC  , and  is individual efficiency defined as 

0=ΔAEC/AEC .  

In Table 1, Case (a), when 0 4p Mh  . In this case, constraint (9) is always binding at optimum 

(commuter’s equilibrium trip cost in FFI and UFI are identical), the feasible value of   consists of two 

disjoint intervals belonging to  0,1 . For a given 0p , two solutions of   exist to the system of 

simultaneous nonlinear equations (8) and (9). Moreover, at optimal solution * , the trip cost of all 

commuters during the peak hour is equal to the right-hand side constant of constraint (9), which is also the 



time cost of free ride commuters in the two FFIs. The system total time cost, TTC, always decreases with 

0p .  

Case (b) when 0 4p Mh  . In this case, constraint (9) is always nonbinding, and any  0,1  is feasible. 

The optimal *  is uniquely determined to be 1 2 , implying ‘pay one get one free’. Different from Case (a), 

the minimum system total time cost, TTC, is a constant, independent of the original fare 0p . The average 

equilibrium commute cost (averaged over free and non-free rides), however, increases with 0p .  

Finally, we point out that the average fare cost (for the same commuter over days or for all commuters on 

the same day) is always 0p  simply because the total number of commuters and the total revenue keeps 

unchanged before and after the FRS.     

Table 1. Fare-reward scheme performances on urban transit rail bottleneck 

0p   *   TTC      AEC      

(a) 
00

4

Mh
p


   01 1

2 4

p

hM
 


 0Np  

 
0

1

p

h M 
 

0p   
 

0

01

p

h M p  
  

(b) 0
4

Mh
p


  

1

2
 

4

MhN
 

 4 1

M

M 
 

4

Mh
 

  0

4

1

Mh

h M p



  
 

 

4

N Mh

4

Mh

0p4Mh

AEC

TTC

0p

4Mh 0p

100

4 4

M

M





Reward ratio

System Efficiency

50

100

Individual Efficiency

(%)

100

5 4

M

M





  

Fig. 4. The reduction in AEC and TTC                Fig. 5.   and efficiency curves respect to original fare 

4. Sensitivity analysis 

The analyses of FRS so far are carried out for given supply (transit headway h  and number of service runs 

M ) and demand (number of commuters N  and their shadow values of time   and  ). Here we conduct 

sensitivity analysis of the obtained results with respect to these exogenous inputs. For convenience, we fix 

the original fare at a reference point *

0 0p p .  

 Fig. 6 plots the changes in system efficiency   and individual efficiency   with the total number of 

service run M,  2,M   . It is observed that the system efficiency is always greater than the individual 

efficiency. In an extreme case with two service runs, system and individual efficiency reaches maximum 



values of 50.0% and 33.3%. When the number of service runs is sufficiently large, they approach their 

minimum value 25.0% and 20.0%, respectively. The positive minimum value of efficiency ensures the 

effectiveness of FRS in a busy rail transit line.  

Fig.7 depicts the impact of the two exogenous parameters   and   on system performances. Here we fix 

the shadow value of early arrival  , and look at the difference between the shadow value of late arrival and 

early arrival in terms of their ratio,   . For a given combination  ,N h  of demand and headway, AEC  

is increasing with the value of    over the range  1,   . Particularly, AEC  reaches a minimum 

value 8Mh  as 1   ( 2 ) and a maximum value 4Mh  as    ( ) (late arrival is 

prohibited). These results illustrate that the FRS is more effective as late arrival penalty increases.     

(%)

50.0

25.0

30

25.9%

33.3

20.0

20.5%

System efficiency

Individual efficiency

2 M
 

                       Fig. 6. Change of efficiency.                                              Fig.7. Change of AEC  

 

5. Conclusion 

This paper proposed a novel fare-reward scheme (FRS) for managing peak-hour congestion of urban rail 

transit bottlenecks. It shifts commuters’ departure time to reduce commuter queuing at stations in an 

incentive-compatible manner while keeping transit operator’s revenue intact. Commuters’ equilibrium 

choice of departure time is based on the trade-off between schedule delay and queueing time and their 

eligibility for a free ride. A free ride during the shoulder periods is granted after a certain number of paid 

trips during the peak hour.    

We found that the performance of the FRS depends on the original fare. The best performance of the FRS 

is achieved at a reference original fare *

0 4p Mh , at which 50% commuters shift departure time from the 

central to the shoulder period, giving rise to at least 25.0% and 20.0%  reduction in total time cost and 

average equilibrium trip cost, respectively. The FRS is more effective as late arrival penalty becomes higher.    
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1 Introduction

This work presents a new method for solving line planning, and specifically shuttle plan-

ning problems. The proposed Internal Bounding Method is an exact approach which,

starting from a high level representation of the network, iteratively solves an extended

representation of the network untill the optimal solution is found. In the worst case, the

algorithm continues untill the network is represented in full detail. However the expec-

tation is that for most practical cases convergence will be much faster, thus increasing

computational speed and tractability of realisticly sized problems. The method will be

applied to a case study for shuttle bus planning for the Danish railway, but the method is

expected to also be applicable for general line planning problems.

2 Background

The shuttle planning problem is a restricted form of a line planning problem or network

design problem. Schöbel (2011) presents an overview of methods and models in operations

research for line planning. The shuttle planning problem was as one of the first studied

by Kepaptsoglou and Karlaftis (2009). Jin et al. (2016) propose an optimization based

approach for both the generation and selection of shuttle lines. van der Hurk et al. (2016)

present an alternative method specifically focussed on the ability to include a large number

of passenger groups, and realistic passenger route choice, in the optimization framework.
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3 Problem Description

The shuttle bus design problem is to select the set of shuttle lines, at a specific frequency,

in order to minimize passenger inconvenience given an operating budget. The below model

is based on van der Hurk et al. (2016).

Given is a set of geographical lines (geoline) G, each representing a possible sequence

of stops a bus could serve. These lines consist of new shuttle bus services, regular bus

services, slightly altered regular bus services to assist with the closure, and the rail lines.

Each geoline g is associated with a set of frequencies Fg. Each geoline and frequency has

a minimum number of required vehicles φgf .

For every vehicle type l ∈ L, δlg is the passenger capacity one vehicle on geoline g can

provide per period, and klg represents the operating costs of a single vehicle of type l on

geoline g. Mg represents the maximum number of passengers that can be transported on

geoline g per period. βl represents the maximum number of vehicles that are available of

type l ∈ L.

Furthermore a set of passenger groups q ∈ Q is defined, together with a set of routes

per passenger group Pq that connect the passenger group’s origin to the destination of a

cost cp through a set of trips connected in space and time. This cost reflects the waiting

time, in-vehicle time, and transfer time on-route. Furthermore P(e) represents the set

of paths that traverse a specific geoline-and-frequency trip. Each passenger group has a

(demand) weight wq.

Binary decision variables ygf represent the decision to open a geoline g at frequency

f . The route choice of passengers is reflected by the continuous decision variables xpq,

defining the number of passengers of group q selecting path p. Finally, integer decision

variables vlg represent the number of vehicles of type l assigned to geoline g, with l ∈ Lg,

the set of vehicle types that can be assigned to line g.

The shuttle bus design problem can be formulated similar to van der Hurk et al. (2016)

as an integer linear program 1 – 10:

min
∑
q∈Q

∑
p∈Pq

cpxpq +
∑
g∈G

∑
l∈Lg

klgvlg (1)



subject to: ∑
p∈Pq

xpq = wq ∀q ∈ Q (2)

∑
q∈Q

∑
p∈Pq(e)

xpq ≤
∑
l∈Lg

δlgvlg ∀g ∈ G,∀e ∈ Eg (3)

∑
q∈Q

∑
p∈Pq(e)

xpq ≤Mgygf ∀g ∈ G,∀f ∈ Fg,∀e ∈ Egf (4)

∑
f∈Fg

ygf ≤ 1 ∀g ∈ G (5)

∑
l∈Lg

vlg ≥ ygfφgf ∀g ∈ G,∀f ∈ Fg (6)

∑
g∈G

vlg ≤ βl ∀l ∈ L (7)

xpq ≥ 0 ∀q ∈ Q, ∀p ∈ Pq (8)

vlg ≥ 0 ∀l ∈ L,∀g ∈ G (9)

ygf ∈ {0, 1} ∀ygf ∈ L (10)

The objective (1) minimizes expected passenger inconvenience and operating cost,

which can be weighted by an appropriate scaling of cp and klg. Constraints (2) impose

the assignment of all passengers to a path. Constraints (3) restrict the assignment of

passengers to paths to be within the available capacity of the geolines, at the selected

frequencies, contained in the path. This capacity depends on the number, and the type,

of the assigned vehicles. Constraints (4) ensures that passengers can only be assigned to

a geoline and freqyency if that geoline is opened at that specific frequency. Constraint (5)

imposes the selection of maximally one frequency f per geoline g ∈ G. Constraints (6)

require a minimum number of vehicles to be assigned to a geoline g at a specific frequency

f . Note that the model allows to assign more vehicles than the minimum required to

operate the line; which would in practice allow for a slightly higher frequency and thus

a slightly lower travel time for passengers than estimated in the model. These situations

will only occur when the additional assigned capacity is not sufficient to open the geoline

g at the next higher frequency to the current selected f . Finally constraint (7) ensures

that no more vehicles are assigned to a line than available.

4 Solution Method

One of the main advantages of the above formulation with a combined frequency and

geoline decision variables, as first proposed in Claessens et al. (1998), is that it allows

to include a minimal frequency constraint conditional on that the geoline is selected for

operation. A main drawback is however that the number of decision variables grows



rapidly in the number of frequencies included for consideration. This is mostly because

the included paths per passenger group are frequency dependent.

Extend
lineset

Solve
model

Frequency set &
            passenger paths

Selected geolines &
             assigned vehicles

Figure 1: Internal Bounding Method

To increase tractability of solving this model, we propose a new Internal Bounding

Method, as represented in Figure 1. It consists of two stages, which are solved iteratively.

In the first stage, the model 1 – 10 is solved. However, not the full model is solved, but

this step only considers a limited representation of the full network. Initially, only a single

frequency is considered per geoline, which especially reduces the number of candidate paths

per passenger group, each representing onde decision variable in the mode, substantially.

Output of this step consists of the set of selected geolines and number of assigned vehicles

to these lines. The latter gives an indication of the required capacity for the current

passenger demand on the line.

In the second stage, this initial solution for the limited network is interpreted and new

frequencies and paths are generated that seem likely to be attractive. These additional

frequencies, and the additional paths, are used to extend the model 1 – 10, which is then

resolved.

This algorithm is referred to as an Internal Bounding Method as each frequency and

line represents not a feasible option, but rather represents a lowerbound on simultaneously

the operator costs as well as the travel costs for the passengers. By extending the lineset,

more variants are added for each line, thereby tightening the bounds, untill in the limit

each possible line and frequency combination is represented. The algorithm stops as soon

as a strictly feasible set of lines is selected, that is, the minimum capacity is assigned to

each selected frequency of each selected geoline.

The hope and expectation is that only few line and frequency options are needed in

the generation to find the optimal solution. The Internal Bounding Method is an exact

approach that may also be of value to general lineplanning problems.



5 Outlook

The work in this project describes a new exact solution method for demand based design

of shuttle bus services during track closures. The solution methods from this project are

tested on data provided by Danish rail operator DSB and Danish bus operator Movia, and

comparisons are drawn with their current approaches. The method is expected to increase

the tractability of the model, thus enabling to solver larger and more realistic instances.

This research is part of the larger research project Integrated Public Transport Plan-

ning and Optimization (IPTOP) supported by both the IFD1, and a consortium of Danish

public transport operators such as train operator DSB and bus transport company Movia.

IPTOP focuses on improving the coordination between separate transport providers to

make the existing services more accessible, more reliable, and more attractive to travelers

while operating efficiently at reasonable costs. For this it aims to develop new methods

for global optimization of passenger preferences and operational constraints, leveraging

today’s better understanding of traveler data and preferences.
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Urban transit network design and timetabling problem for

multi-depot round-trip routes

James C. Chu ∗

Abstract

This study solves the simultaneous planning problem of network design and timetabling

for urban bus systems. Formulating and solving TNDTP are cumbersome because TNDTP

combines all three major planning activities of TNP into a single problem. Therefore, the

TNDTP considered in the literature is frequently size-limited and highly simplified (Guihaire

and Hao, 2008). The first few models developed in related studies are solved in a sequential

manner rather than as a single problem, e.g., the two-paper series of Shrivastav and Dhingra

(2001) and Shrivastava and Dhingra (2002), as well as Quak (2003). Heuristics were de-

veloped for route construction in Shrivastav and Dhingra (2001), and the genetic algorithm

was utilized for timetable synchronization in Shrivastava and Dhingra (2002). Quak (2003)

adopted heuristic methods for routing and timetabling problems separately. The integration

of network design and timetabling is not achieved in these studies. Zhao and Zeng (2008)

proposed a simplified model for optimizing transit routes, headways, and timetables simul-

taneously. The model did not have a linear formulation, and thus, a method that combined

simulated annealing, tabu search, and greedy algorithms was developed to solve the problem

heuristically. For intercity bus systems, Yan and Chen (2002), Yan et al. (2006), and Yan

and Tang (2008) also proposed integrated models for routing and timetabling, which were

formulated as mixed-integer programming (MIP) models. One of the main differences be-

tween intercity and urban bus systems is that the former has greater freedom for timetabling,

whereas the latter typically has specific restrictions for timetable patterns (Yan and Chen,

2002). For example, urban buses usually have constant headways because they are easy to

remember and utilize for passengers. For intercity buses, passengers are accustomed to look-

ing up the timetable before they travel, and thus, a rough service frequency will be sufficient.

The second major difference is that the route design for intercity buses is flexible, whereas

that for urban buses is not. For example, urban buses are generally required to return to the

same depot for the convenience of vehicle management. On the contrary, this requirement

does not always apply to intercity buses because their travel distances can be too long to

∗Corresponding author, Associate Professor, Department of Civil Engineering, National Taiwan University, Tai-
wan, Tel: +886 2 33664235, Fax : +886 2 23639990, jameschu@ntu.edu.tw
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enable them to return to the same depot in one day. Therefore, TNDSP for intercity bus

systems is inappropriate for urban bus systems without significant modification. With regard

to problem solving, the model in Yan and Chen (2002) was solved using an algorithm based

on Lagrangian relaxation, whereas the models in Yan et al. (2006) and Yan and Tang (2008)

were solved using heuristics algorithms. Yan et al. (2006) and Yan and Tang (2008) consid-

ered stochastic demand and stochastic travel time, respectively, and essentially belonged to

a different class of problems. The preceding discussion indicates that the related TNDTP

models are all solved using heuristic and relaxation approaches given the high complexity of

the problem. Exact solution algorithms have not yet been successfully developed for TNDTP.

This study proposes an innovative model for urban TNDTP that focuses on urban bus

systems with multi-depot round-trip routes. It is the first to propose a mixed-integer (linear)

programming model for such a problem, which is the first major contribution of this work. To

solve the aforementioned problem, a branch-and-price-and-cut (BPC) algorithm is developed.

This algorithm is the first exact solution approach for such a problem, which is the second

major contribution of this study. The proposed model includes multi-objectives for oper-

ator and passenger, unsatisfied demand, bus depot, route pattern, route length, frequency

bound, headway structure, bus capacity, and transit assignment—all of which have never

been considered in a single model in the literature. The model formulation for TNDTP and

its solution algorithm have three noteworthy features. First, the transit routes are round-trip.

In practice, round-trip routes are widely adopted in urban bus systems. They are attractive

to both operators and passengers. For operators, round-trip buses return to the same depot

after service, which simplifies the management of vehicles. Round-trip routes are also conve-

nient for passengers because they can take the same route for both directions of their daily

trips. Second, timetables can be either constant or variable headways, both of which are

common practices in urban bus systems. A MIP formulation for constant headways is devel-

oped. Given this formulation, variable-headway timetables can also generated because they

are simply relaxations of the constant-headway timetables. Third, the model formulation and

solution algorithm apply the observation that a timetable of a bus line can be uniquely repre-

sented by its bus route and dispatch pattern. As illustrated in Fig. 1, the route for a bus line

is the node sequence of 1-2-3-4-3-2-1, which forms a round-trip route. A complete timetable

for the bus line can be derived without ambiguity given the dispatch pattern at the depot and

the (deterministic) link travel times. MIP formulations that generate a timetable according

to the bus route and dispatch pattern can then be developed based on this observation. The

observation is also beneficial for the solution algorithm. Instead of pricing out a complete

timetable during column generation, only a combination of bus route and dispatching pat-

tern should be priced out, which significantly improves the efficiency of the solution algorithm.

A computational study is conducted to evaluate the performance of the proposed method-

ology and to understand the effects of model parameters on the results. The comparison of
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Figure 1: Concept of route, dispatching pattern, and timetable

the solution approaches using the same case clearly demonstrates that the proposed BPC

algorithm is superior to MIP and the BP algorithm. Using BPC, a good quality solution

can be found at the root node within a short period for most of the cases. Different values

of objective weights, number of depots, number of candidate lines, minimum headway, and

planning duration are tested. The outcomes of the routes and timetables as well as the statis-

tics of operators and passengers are reasonable, which shows that the proposed model and

the solution algorithm are useful tools for simultaneously planning bus network design and

timetabling. By definition, the size of a time-expanded network increases with the number

of periods. Consequently, problems formulated in a time-expanded network with a long du-

ration are sometimes unsolvable. Benefiting from the Dantzig-Wolfe decomposition and the

polynomial time algorithm for SP, the time for finding solutions does not increase drastically

as the length of planning duration increases. This result indicates the potential for applying

the methodology to real-world large problems.

Keywords: public transit, network design, timetable, branch-and-price-and-cut (BPC), mixed-

integer programming (MIP), algorithm

3



References

Guihaire, V., Hao, J.-K., 2008. Transit network design and scheduling: A global review. Trans-

portation Research Part A: Policy and Practice 42 (10), 1251–1273.

Quak, C., 2003. Bus line planning. Master’s thesis, TU Delft.

Shrivastav, P., Dhingra, S., 2001. Development of feeder routes for suburban railway stations using

heuristic approach. Journal of Transportation Engineering 127 (4), 334–341.

Shrivastava, P., Dhingra, S., 2002. Development of coordinated schedules using genetic algorithms.

Journal of Transportation Engineering 128 (1), 89–96.

Yan, S., Chen, H.-L., 2002. A scheduling model and a solution algorithm for inter-city bus carriers.

Transportation Research Part A: Policy and Practice 36 (9), 805–825.

Yan, S., Chi, C.-J., Tang, C.-H., 2006. Inter-city bus routing and timetable setting under stochastic

demands. Transportation Research Part A: Policy and Practice 40 (7), 572–586.

Yan, S., Tang, C.-H., 2008. An integrated framework for intercity bus scheduling under stochastic

bus travel times. Transportation Science 42 (3), 318–335.

Zhao, F., Zeng, X., 2008. Optimization of transit route network, vehicle headways and timetables

for large-scale transit networks. European Journal of Operational Research 186 (2), 841–855.

4



The limited-stop bus service design problem with stochastic 

passenger assignment 
 

Guillermo Soto  

Department of Transport and Logistics Engineering 

Pontificia Universidad Católica de Chile, Chile 

Homero Larrain 

Department of Transport and Logistics Engineering 

Pontificia Universidad Católica de Chile, Chile 

Juan Carlos Muñoz  

Department of Transport and Logistics Engineering 

Pontificia Universidad Católica de Chile, Chile 

As demand and modal share of trips on public transport keeps rising throughout the world, the 

need for fast and reliable public transport systems with high quality standards for its users 

becomes more important. Bus Rapid Transit (BRT), which can be defined as a "high-quality, 

customer-orientated transit that delivers fast, comfortable and cost-effective urban mobility" 

(Wright, 2003), is a mass transportation alternative which has gained attention and popularity 

particularly during the last decade. Besides the emblematic cases of Curitiba and Bogotá, there 

are currently more than 200 cities around the world which have adopted BRT systems on their 

main arteries. Furthermore, new BRT corridors keep popping up in every corner of the world 

every day: nearly one third of these cities launched their BRT systems after the year 2010 

(www.brtdata.org). 

A key element in BRT allowing to provide fast rides while making an efficient use of a bus fleet, is 

the correct utilization of limited-stop services. Thus, counting on a reliable tool for designing 

efficient limited-stop services is of special importance in the light of the rise of BRT systems. 

During the last decade, many authors have proposed different methodologies for the design of 

limited-stop services (see [1], [2], [3], [4] and [5]). Different models and methodologies work 

under a wide range of assumptions, however, there is one particular assumption that all of these 

authors seem to share: the deterministic nature of passenger assignment. 

Deterministic passenger assignment is a very convenient assumption which simplifies the 

formulation of the problem. In absence of capacity limitations (such as the bus capacity), it allows 

to formulate a mathematical programming problems that determines the optimal frequencies of 

a set of services while assigning passengers to the minimum cost route. However, this type of 

assignment (also known as “all or nothing”) has one important shortcoming: it assumes that every 

passenger will always take his/her shortest path, meaning that a slightly worse option will not 

carry any passengers at all. This triggers stability problems with the optimal solutions of the 

model. 

To deal with this instability, we propose using a stochastic assignment. However, this poses some 

new challenges. Since there is no longer a natural way to solve the network design problem 

simultaneously, we separate the problem and solve it using the methodology suggested by [6]. 

http://www.brtdata.org/


We propose a framework for the limited-stop service design problem (LSDP) over a corridor 

where the problem is divided into the limited-stop service generation problem (LSGP), and the 

capacitated frequency optimization and passenger assignment problem (CFOAP). 

The CFOAP can be presented in a generic way as the problem of minimizing a social cost function, 

subject to three groups of constraints: structural constraints, capacity constraints, and passenger 

behavior constraints. The input for this problem is a set of services previously defined by solving 

the LSGP or alternatively by an expert, an origin-destination (O-D) trip matrix, and some other key 

parameters. 

In this framework, structural constraints encompass all the constraints that make the frequencies 

of a solution feasible: non-negativity and frequency conservation. The role of capacity constraints 

is to ensure that bus capacity (and possibly other types of capacity limitations) is not exceeded by 

the solution. The last group, passenger behavior constraints, guarantees that passengers are 

assigned to routes that are consistent to a selected behavioral model, and not just the routes that 

minimize social costs. In the deterministic case where passengers travel through their minimum 

cost option, behavioral constraints can be dropped only when i) there are no capacity constraints 

(or no capacity is binding) and ii) the user cost function in the total cost being minimized coincides 

with the cost individuals minimize to reach their destinations. 

The solution of the CFOAP can tackled by first solving the uncapacitated version of the problem 

(FOAP) and then applying some heuristic approach to find a solution where capacity constraints 

are not violated, and where passenger behavior constraints are also met. Two greedy heuristics 

for capacity, which rely on solving the FOAP iteratively setting lower bounds to the frequencies, 

are proposed in [2] and [6]. In this work we solve the FOAP using a bi-level formulation that makes 

it possible to model passenger assignment as a stochastic process. The problem is divided into a 

frequency optimization stage (FOP) where passenger assignment is fixed, and a passenger 

assignment stage (AP) where frequencies are fixed. This separation of the problem in two levels 

makes it possible to test different behavioral models for passengers. 

In this context the FOP consists on minimizing a social cost function subject only to structural 

constraints. This is a non-linear problem, but it is not hard to solve for instances inspired in real 

sized corridors. The AP, on the other hand, can be formulated as deterministic or stochastic. In 

this work, we consider that in the presence of parallel services passengers will choose a set of 

attractive services (which is a subset of the services connecting a given O-D pair) to perform their 

journey. It was proven by [7] that if a service A belongs to the set of attractive services for a 

desired trip, a service B which connects the same O-D pair with a lower travel time will also belong 

to the set of attractive services, regardless of its frequency. In simple words: if you are willing to 

take service A, but a faster service B shows up first, you will take it no matter how infrequent this 

service is. 

To solve the deterministic AP, first we compute for each O-D pair the expected travel time 

associated to every possible set of attractive services. Then, we find the set of attractive services 

that minimizes this value using the methodology proposed by [7], and build an auxiliary network 

where every O-D pair is connected by an arc with travel time equal to this value plus a transfer 

cost. Finally, trips are assigned to their minimal route over this network, and passengers are split 

among the attractive services on every arc in proportion to the frequency of the services. 

The stochastic AP, in turn, is solved by including randomness in two steps of the algorithm just 

described. First, for a given O-D pair, passengers will choose one of the reasonable sets of 

attractive lines following a multinomial logit model. The cost of an arc in the auxiliary network will 



be represented by the expected maximum utility of the pair. Then, we assume that passengers’ 

route choice over this network can be also modeled as a multinomial logit. This last step of the 

assignment process can be performed using Dial’s algorithm [8], which does not rely on route 

enumeration. The assigned trip over the network are finally translated into bus loads. 

We have implemented both versions of the AP and solved the CFOAP for a test scenario with data 

inspired in a real corridor in the city of Santiago, Chile. Our results show, first of all, that the 

stochastic approach is more robust than the deterministic one, as expected. We performed 

sensitivity analysis on optimal solutions from the model showing that the predicted assignment 

from the deterministic approach has discontinuities that the stochastic approach avoid. These 

discontinuities in passenger assignment can be a serious issue when using the model to design a 

system, because the model may find a solution that satisfies capacity constraints only on a small 

neighborhood of the values of uncertain parameters such as the value of waiting time or 

operating costs. 

Our tests have also shown that the bi-level approach permits solving larger instances in shorter 

times. This opens many new possibilities, especially when dealing with instances with constraining 

capacity. The heuristics to deal with capacity have to solve an instance of the FOAP in every 

iteration, which means that if the solution of this problem is more efficient, it is possible to design 

new capacity heuristics that explore a larger number of solutions, such as GRASP heuristics. 

[1] Sun, C., W. Zhou, and Y. Wang. 2008. “Scheduling Combination and Headway Optimization of 
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Abstract

A problem encountered in practice in inland container transportation is to decide on the mode and day
of transportation of a container. To this end, we present an integer linear programming. The method
presented leads to a significant reduction in cost compared to a method based on current practice.

Introduction

In container logistics, we encounter two major trends: (1) the increasing size of container vessels and (2)
decreasing freight rates [3]. The first trend leads to an increasing number of containers that are delivered
at one moment at a deep sea terminal. Besides the fact that this puts a large pressure on the terminal
operations, the hinterland transport also needs to be optimized in order to guarantee an efficient dispatch
of all containers. Together with the pressure to operate at the lowest cost, the use of a barge for the
hinterland transport is encouraged, because a barge is cheaper than a truck and it can ship many more
containers at once. The disadvantages of a barge are that a barge is slower than a truck and it is less
flexible. In this extended abstract, a method to optimize the balance between transporting containers by
truck and by barge is discussed.

We consider a commercial Third Party Logistics Provider (TPLP) in the Netherlands which needs to
ship containers from multiple deep sea terminals in one port to one inland terminal. This planning for
the containers is made per day. For each container one needs to decide on which day it is transported
and which mode of transportation is used: truck or barge. As these are complex decisions, a model to
optimize the decisions is needed.

All containers arrive by sea vessel at the deep sea terminal. Unloading a sea vessel takes, usually, 24
hours, so we assume that the first shipping moment of a container is one day after the arrival of the sea
vessel. Moreover, it is assumed that when a container leaves the deep sea terminal by barge it arrives a
day later at the inland terminal. When a container is shipped by truck, it arrives the same day at the
inland terminal. Each customer has a latest delivery day, the so-called call date. The container must
not be delivered after the call date. Since all customers are located in the neighborhood of the inland
terminal, the container can arrive on the call date at the inland terminal. We are not focusing on the
transportation from the inland terminal to the customer.

The moment a container arrives at the deep sea terminal, the demurrage period for that container
starts. A container has a certain demurrage free period, if the container is still at the deep sea terminal
after that period, one has to pay demurrage costs per day the container is at the deep sea terminal.

Each container has a certain size in Twenty foot Equivalent Unit (TEU) and a weight in kilograms.
For each day it is known which ships are at the deep sea port and can be used to pick up containers.
Each barge has a specific maximum capacity concerning both the total weight and the total TEU of the
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containers. Another constraint concerning barges is that a terminal might require a minimum number of
containers to be loaded on a barge. Besides, each day there is an unlimited amount of trucks available. A
truck can transport any container, so it has no constraints concerning weight or size. However, one truck
can only ship one container.

The goal of our problem is to minimize the cost associated with the transportation and demurrage of
containers and with the visit of a terminal by barge. The last one is added, because if a barge is visiting
many terminals it might not have enough time to sail via all terminals. We do not decide on route the
barge has to sail.

Surveys for planning problems for containers are given in [2] and [5]. Most research has been devoted
to the strategic development of the network. If the operational aspect of a planning is considered, this
is mostly done from the point of interest of a shipping company, which has usually no choice in the
day of transportation. As pointed out in [5], most multiperiod operational planning is done for empty
containers. The research that is done to the operational aspect of the planning of full containers [1, 4]
does not differentiate between containers in their planning. So the problem discussed in this extended
abstract is unique in its focus on a multiperiod planning problem for containers which all have different
parameters, such as size, arriving date and call date.

Mathematical model

The mathematical formulation of the problem sketched in the introduction will be given in this section.
Firstly, all input and decision variables will be explained and afterwards, an integer linear program (ILP)
is given to solve the problem.

For every container i = 1, . . . , nc, we need the estimated arriving date (ETA) of the container at the deep
sea terminal (dai) and the call date of the customer(cdi). Moreover, every container has a size in TEU
(teui) and a weight in kilograms (wi). Finally, for each container the deep sea terminal where it is located
(tmi) is known.

For each barge b = 1, . . . , nb, we know its capacity in both TEU (ctb) and kilograms (cwb). Moreover,
the indicator pobt indicates whether barge b is in the deep sea port in period t = 1, . . . , tmax. Besides, for
every terminal r = 1, . . . , nr the minimum number of containers that needs to be loaded on barge if the
terminal is visited by barge(mbr) is given.

The costs associated with transporting container i in period t by truck is denoted as trit and by barge
b as baibt. The demurrage costs of leaving container i at the deep sea terminal for k days are given by
dmik. Moreover, there is a penalty of tvrbt for visiting terminal r by barge b on day t in order to reduce the
number of terminals visited by barge. Another option to achieve that, could be to impose a constraint on
the total number of terminals visited on one day by a barge. We have not chosen for this option, because
it might occur that visiting one extra terminal can lead to an enormous decrease in transportation and
demurrage costs. In this scenario, it might be better to visit that terminal and to have a delay in the
barge schedule.

Finally, there are three types of binary decision variables. Xibt indicates whether container i is loaded
on barge b in period t. Yit is the variable associated with the decision to transport container i by truck
in period t. Finally, variable Zrbt tells us whether terminal r is visited by barge b in period t.

Using the notation above, the problem can be formulated as the following ILP:

min

nc∑
i=1

nb∑
b=1

tmax∑
t=1

(baibt + dmi,t−dai+1)Xibt +

nc∑
i=1

tmax∑
t=1

(trit + dmi,t−dai+1)Yit+

nr∑
r=1

nb∑
b=1

tmax∑
t=1

tvrbtZrbt

(1)

s.t.

dai∑
t=1

(
nb∑
b=1

Xibt

)
+ Yit = 0 ∀i (2)
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nb∑
b=1

cdi−1∑
s=dai+1

Xibs +

cdi∑
t=dai+1

Yit = 1 ∀i (3)

nb∑
b=1

tmax∑
s=cdi

Xibs +

tmax∑
t=cdi+1

Yit = 0 ∀i (4)

nc∑
i=1

teuiXibt ≤ ctb ∀b, t (5)

nc∑
i=1

wiXibt ≤ cwb ∀b, t (6)

Zrbt ≤ pobt ∀r, b, t (7)∑
i:tmi=r

Xibt − Zrbtmbr ≥ 0 ∀r, b, t (8)∑
i:tmi=r

Xibt − Zrbtnc ≤ 0 ∀r, b, t (9)

Xibt ∈ {0, 1} ∀i, b, t (10)

Yit ∈ {0, 1} ∀i, t (11)

Zrbt ∈ {0, 1} ∀r, b, t. (12)

In the objective function (1), the transportation costs, demurrage costs and number of terminals visited
by barge are minimized. In case the container is shipped before the end of the demurrage free period, the
demurrage costs equal zero. Constraints (2) and (3) force together that the container is shipped a day
after the ETA of the sea vessel and in time to arrive before or at the call date at the inland terminal.
Equation (4) makes sure that the container cannot be shipped a second time from the deep sea terminal
to the inland terminal. Without this constraint, this might happen at a certain terminal in order to reach
the minimum number of containers to be picked up by barge. The two inequalities (5) and (6) ensure that
the capacity of a barge is not exceeded. To prevent a terminal of being visit by a barge that is not at the
deep sea port, constraint (7) is needed. The two inequalities (8) and (9) force, respectively, that when a
terminal is visited the minimum number of containers is loaded and that no containers can be loaded on
a barge without visiting the terminal by barge. Constraints (10), (11) and (12) ensure that the decision
variables are binary. It is important to note that there always exists a feasible solution, because there are
no restrictions on shipping a container by truck. Hence, it always feasible to ship all containers by truck.

Numerical results

Although the ILP formulation discussed in the previous section cannot deal with extremely large instances,
it can be solved in reasonable time for an instance with 400 containers, 3 barges, 8 days and 10 terminals.
The instance is based on a real data of a TPLP located in the Netherlands. The ETA of the containers
is evenly distributed between t = −1 and t = 6 and the call date is between 3 and 10 days after the ETA.
Each container has a size of 1, 2, or 3 TEU and a weight between 5,000 and 30,000 kilograms.

A barge schedule in which there is one barge available on every day, except at day 3 and 8, is given.
Two of the barges have a capacity of 100 TEU and 1,500,000 kilograms and one barge of 125 TEU and
2,000,000 kilograms. We do not put any restrictions on the minimum number of containers to be loaded
at a terminal, i.e., mbr = 1. The costs are as follows: trit = 150, baibt = 25 per TEU and the demurrage
costs are 40 for each day after the demurrage free period for 1 TEU containers and 60 for containers of
2 or 3 TEU. We penalize visiting a terminal with tvrbt = 1. In our scenario, the total barge capacity for
the entire period is 650 TEU, whereas the total TEU of all the containers equals 665, so at least 15 TEU
should be shipped by truck.
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Table 1: Description of different scenarios
Scenario Scenario Description

I Basic scenario
II ETA of container is 1 day later than in basic scenario
III Call date of container is 1 day earlier than in basic scenario
IV Capacities of the barges are 90% of the basic scenario
V Barge of day 5 in basic scenario sails on day 3
VI The demurrage free period is one day shorter than in basic scenario
VII Demurrage costs are 50% of costs of the basic scenario
VIII Trucking a container costs 75
IX Visiting a terminal is penalized with tvrbt = 500
X Minimum number container loaded on barge per terminal equals 5

The data above sketches a basic scenario. We will slightly change some parameters of this basic sce-
nario to obtain 9 other scenarios which are described in Table 1. In Table 2, the optimal costs of the ILP
for these scenarios are compared with the solution of the first-in-first-out (FIFO) method, which is based
on a method that is currently used in practice at the TPLP. In the FIFO method the jobs are ordered
according to their ETA, call date and demurrage free days. Thereafter, the containers are planned in
that order and each container is shipped at the earliest possible barge. The planning is made such that
as many containers as possible are shipped by barge.

As can be seen in Table 2, the total cost of the optimal solution of the ILP is on average about 8% lower
than the FIFO solution. This is mainly caused by the fact that, in general, the optimal ILP solution
has lower demurrage costs. The ILP sometimes ships an container extra by truck in order to reduce the
demurrage costs, which is never done by the FIFO method.

The scenarios II, III and IV are somehow easier than the basic scenario, because for each barge there
are fewer containers that could be shipped with that barge. Hence, it is logical that for these scenarios
the FIFO is performing better compared to the ILP solution than in the basic scenario. In scenarios V
and VII, the demurrage costs are, relatively to the basic scenario, less important, so the FIFO method
is in these scenarios also performing better than in the basic scenario. On the other hand, in scenarios
VI and VIII, the demurrage costs are more important than in the basic scenario, so the ILP method
is getting relatively better results. Finally, scenarios IX and X are the hardest scenarios, because the
terminal where a container is located is a major issue. So it is not surprising that the FIFO solution is
doing worse compared to the ILP solution in those scenarios than the basic scenario.

It should be noted that the total costs in Table 2 do not include the penalties for visiting terminals by
barge. However, the ILP solution visits in almost all scenarios fewer terminals than the FIFO solution.
In scenarios I up to VIII, 47-49 terminals are visited by barge in the ILP solution and 50-52 in the FIFO
solution. In scenarios IX and X obviously fewer terminals are visited by barge. In scenario IX the ILP
solution visits 23 terminals and the FIFO 26, but in scenario X the FIFO method visits fewer terminals
than the ILP method, namely 35 versus 38. However, as can be seen in Table 2, this results in more than
4000 extra demurrage costs for the FIFO method.

Conclusion & future research

The model presented above can be used to decide which container should be transported on which day
using which mode of transportation such that the total transportation costs, demurrage costs and ter-
minals visited by barge are minimized. This leads to a substantial decrease in the transportation and
demurrage costs and the number of terminals visited by barge compared to the FIFO method. Most of
the decrease of the costs is caused by the fact that the ILP solution has fewer demurrage costs. The ILP
method is better in making the trade-off between paying demurrage costs or transporting a container by
truck. Hence, the more important demurrage costs are the better is the performance of the ILP method
compared to the FIFO method. Moreover, if visiting a terminal by barge is a major issue, the ILP method
is also a wise method to use.
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Table 2: The results of the optimal solution of ILP compared with the First-In-First-Out method
ILP FIFO

Scenario
Transport
costs

Demurrage
costs

Total
costs

Transport
costs

Demurrage
costs

Total
costs

Relative
difference
total costs

I 18025 960 18985 17600 3120 20720 8.4%
II 22200 820 23020 22200 1740 23940 3.8%
III 18425 1380 19805 17925 3420 21345 7.2%
IV 19850 780 20630 21050 780 21830 5.5%
V 17150 920 18070 17300 880 18180 0.6%
VI 19825 8380 28205 17450 15060 32510 13.2%
VII 17000 1100 18100 17450 1540 18990 4.7%
VIII 17050 780 17830 16775 3120 19895 10,4%
IX 19625 3280 22905 19125 6500 25625 10.6%
X 18400 1900 20300 17725 5960 23685 14.3%

Further research should be conducted to find a method which is able to solve larger instances of the ILP.
A possibility might be to solve the linear relaxation and apply randomized rounding on the fractional
solution. There lies a challenge in combining the rounding of both Xibt and Zrbt together. If we choose
container i to be served by barge b on day t (Xibt = 1), we need to visit terminal tmi by barge b on day
t (Ztmibt = 1). However, it is not trivial that constraint (8) can be satisfied.

The current formulation can be extended to a situation in which there are multiple hubs in the
transportation network, because the model decides for each container the day and mode of transportation
on a certain route. In case a route might contain stops at multiple hubs, the only factor that makes the
model more complicated is that consolidation constraints need to be added. Obviously, other modes than
barge and truck can also be used in this model.
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1. Introduction

Intermodal freight transportation may be considered as one of the stepping stones of

globalization, as it allows for efficient intercontinental door-to-door transportation of goods

through a multimodal chain of land and sea transportation services that often involves sev-

eral different carriers. In a classical example of an intermodal chain, loaded containers leave

the initial shipper location by truck and are directed either to a port or to an intermodal

terminal, from where a train will transport them to a port. A ship then moves the con-

tainers to another port, from where they are transported to the destination by one or a

combination of several means of transportation (Crainic and Kim 2007).

These intermodal terminals are special transshipment nodes that are responsible for

consolidating traffic and dispatching containers on trains destined to other nodes of the

network, so that these containers can eventually reach their final destination. Although

several studies in the literature concentrate on classification/shunting yards, they should

not be confused with intermodal terminals, as only the latter allows temporarily storage,

loading and off-loading of containers. For a comprehensive survey on the literature on

intermodal transportation we refer the reader to the surveys of Crainic and Kim (2007)

and of Steadieseifi et al. (2014).

Most of the intermodal traffic is containerized, because it ensures a safer, cheaper and

more reliable means of handling the cargo. Indeed, this market has performed remarkably

Email addresses: bruno.bruck@cirrelt.ca (Bruno P. Bruck), jean-francois.cordeau@hec.ca
(Jean-François Cordeau), emma.frejinger@cirrelt.ca (Emma Frejinger)



well in the last decade or so, with annual growth rates of about 15% (Steadieseifi et al.

2014). In North America alone, container traffic through ports has increased overall by

26.2% since 2010 (CBRE Research 2015).

While the international market mainly follows the ISO standard and uses 20, 40 and

45-foot containers, in North America there are also 53 and 48-foot containers, which are

used for domestic traffic. Another complication of this market is that trains are usually

double stacked and there are many types of railcars with different characteristics, e.g.,

number of wells (platforms), well length (40, 45, 48 and 53 feet long) and weight loading

limit. This great variety of containers and railcar types has a significant impact on the

load planning, which concerns the assignment of containers to slots of railcars. Performing

a proper matching in the load planning is very important to ensure the best usage of the

available capacity of railcars and also the fuel efficiency of the train, given that double

stacked containers influence aerodynamic aspects.

The block planning is also another critical issue for the design of an efficient and profitable

rail transportation system. A block is defined as a group of railcars, with possibly different

origins and destinations, that are moved as a single unit between terminals. Because of

this the railcars of the same block do not need to be handled individually at intermediate

terminals, reducing handling costs.

In this paper we focus on an operational problem faced by a North American railway in

the context of intermodal railway transportation of containers. On a daily basis, terminal

operators have to take decisions concerning several different and interconnected activities,

such as: how inbound trains are split into sequences of railcars and on which tracks those

railcars are parked for loading and off-loading operations or even for temporarily parking;

and the design of proper load and block plans. In our case, we assume that the block plan is

partially given, as the expected total length of each block and the demand of certain types

of railcars are known. However, the individual cars that compose each block is optimized

based on the available resources. Then, instead of taking these aspects separately, we

propose an integrated formulation and an iterative algorithm that incorporates all these

decisions together in order to achieve better results.

2. Problem definition and solution method

We are given a sequence of inbound trains, a sequence of railcars arriving on these

trains, a set of outbound blocks to be created, a set of outbound containers, and a set of

tracks. Each inbound train can be split into a number of segments. A segment is composed

by a set of railcars that occupy consecutive positions in the inbound train. Therefore, a
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segment can be defined by the first and last positions occupied by the railcars forming this

segment. For example, a train comprising 100 railcars could be split into three segments:

one from positions 1 to 35, one from 36 to 85 and one from 86 to 100. We assume that one

can perform an a priori enumeration of the potential segments that can be created from

any inbound train, and that the exact composition (in terms of railcars) and length of the

segment is known with certainty. Each segment is further divided into a set of sections (or

sub-segments) that will ultimately be assigned to different outbound blocks. For example,

a segment with 35 railcars could be divided into a first section with 20 cars and a second

one with 15 cars. The two sections will remain together until the departure of the outbound

trains to which these sections are assigned.

The set of tracks can be partitioned into a set of storage and working tracks. While

both types can be used to move railcars through the terminal and for temporary parking,

containers can only be loaded on and off-loaded from railcars parked on working tracks. To

model the fact that several segments can be parked on a single track at the same time, we

discretize tracks into a number of track slots representing segments of a given length. For

example, a 1000m track could be divided into 20 segments of 50m, thus a segment with

length of 500m assigned to slot 1 would occupy the first 10 slots of this track. The sets of

storage and working tracks can be further partitioned into a subset of single-ended tracks

(where railcars enter and leave from just one end) and double-ended tracks (where railcars

can enter and leave from both ends). In any case, the moves taking place at an open end

must respect the last-in-first-out (LIFO) policy.

We assume that the inbound railcars belong to different families, which are defined

based on well length. Then, there exists a demand (or minimum requirement) for railcars

of certain types for each outbound block. This helps ensure that other terminals are supplied

with the proper types and number of railcars. For instance, terminals on ports mainly have

to deal with 20 and 40-foot containers and, thus, do not need railcars with wells longer than

40 feet.

The problem then consists in deciding on (i) how each inbound train is split, i.e., which

segments are created; (ii) which track and track slot each segment is assigned to, (iii) which

sections of each segment are assigned to each outbound block, and (iv) which containers

are assigned to each railcar. These decisions are subjected to a large set of constraints that

must be satisfied. In general terms, the main constraints are:

1) The set of segments created from an inbound train must be consistent, i.e., this set

must form a partition of the railcars into subsets of consecutive elements.

2) Containers should be assigned to appropriate railcars. The assignment must take into
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account not only the respective size (20, 40, 45, 48, or 53-foot) and type (e.g., high

weight loading capability) of the container and railcar, but also additional constraints

related to the loading of containers on railcars. In particular, a constraint is needed

on the total number of containers assigned to the same railcar. Ideally, one would

want to take into account all constraints of the associated load planning problem, but

simplifications are necessary to keep the integrated problem tractable.

3) A container can only be assigned to a railcar if the railcar belongs to a section assigned

to the appropriate block for the container.

4) The total number of segments created per train should respect the availability of the

resources required for the switching.

5) The assignment of segments to tracks must respect the capacity of the tracks and

ensure that segments assigned to the same track at the same time do not overlap

(they must occupy disjoint positions). In addition containers can only be loaded on

railcars that are parked on working tracks.

6) The sequence of moves (i.e., segments entering and sections leaving) on each track

must satisfy the LIFO property given the planned arrival times of inbound trains and

departure times of outbound trains. In the case of a double-ended track, care must

be taken to properly represent the moves taking place at both ends of the track. A

complicating factor that must also be taken into account is the presence of crossovers

connecting different tracks.

7) Each outbound block has a certain demand for railcars of each family that should be

met. In addition, these blocks have a certain expected length that should lie within a

certain specified range.

8) The total length of an outbound train must respect the total capacity of the locomo-

tives assigned to this train.

The objective function of the proposed integer programming formulation consists in min-

imizing the sum of two types of penalties. The first one concerns assignments of containers

to railcars that are parked on a track slot far from the storage location of the container in

the yard. This helps reduce the time required by cranes to transport containers from their

location to the railcars. The second term refers to penalties applied to containers that are

not assigned to any railcar. Note that this is necessary because it is not guaranteed that all

containers can be loaded due to the temporal unavailability of space on the working tracks.

Instead of putting a heavy burden on the formulation in order to model the movements

of cars in the terminal and ensure that they are feasible, we decided to relax the formulation
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and consider those aspects by adding lazy cuts to the model, in a branch-and-cut framework,

for every new integer infeasible solution that is found during the branching process.

In practice, the problem can be solved on a daily basis for each terminal with the

planned train schedule for the day. Indeed, in a first phase of the case study we tested the

formulation on benchmark instances representing single days that were generated based on

realistic data. These instances have about 3 to 4 inbound trains, an average of 250 inbound

railcars (some of which are not loaded/off-loaded at the terminal) and 100 containers. The

formulation was implemented in C++ using IBM Cplex 12.6.2. Preliminary tests showed

that considering the complete enumeration of possible segments and sections for each train

results in an incredibly high number of constraints and variables that render the formulation

intractable. However, by considering a limited set of consistent segments for each train, we

were able to solve the formulation in a few minutes.

Based on these observations we devised an iterative algorithm that solves the formulation

at each iteration over a reduced set of segments. After each iteration the solution is analyzed

and the best solution updated. Then, more segments are added and the formulation is solved

once again, but using as a warm start the best solution found in previous iterations. This

approach has showed some promising results and is being further improved.
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The Stochastic Container Relocation Problem

Abstract

The growth of container shipping over the last decades significantly increased the interest in managing
operations at container terminals more efficiently. These operations are commonly classified as: 1) seaside
operations, involving the assignment of ships to quay cranes, the loading of export containers on vessels,
or the discharging of import containers from vessels onto internal trucks; 2) yard operations including
the routing of trucks within the yard, the stacking of containers for storage, or the delivery of import
containers to trucks for delivery to another location. This work focuses on the latter problem.

Because storage space in yards is limited, containers must be placed on top of each other, thereby
creating stacks. While this structure addresses space constraints, it complicates the process of delivering
containers to trucks for delivery. Indeed, when a truck comes to pick up a container, the container can be
blocked by other containers placed above it. In this case, blocking containers need to be relocated to other
stacks in order to deliver the desired container. Consequently, many such relocation moves, also called
reshuffles, are performed during the retrieval process of containers. These relocations are inherently
inefficient and yards could incur considerable delays if they are not controlled. The Container Relocation
Problem (CRP) (also known as the Block Relocation Problem) addresses this issue. It is concerned with
finding a sequence of container moves that minimizes the number of relocations needed to retrieve all
containers while respecting a given order of retrieval. Figure 1 provides a simple example of the CRP.

2
6 4

3 5 1

Reloc 2
−−−−−→ 2 6 4

3 5 1

Reloc 4
−−−−−→

4
2 6
3 5 1

Ret 1,2,3,4
−−−−−−−→ 6

5

Reloc 6
−−−−−→

6 5

Figure 1: Configuration for the CRP with 3 tiers, 3 stacks and 6 containers. The optimal solution performs
3 relocations: relocate 2 on stack 1 on the top of 3; relocate 4 on stack 2 on the top of 6; retrieve 1; retrieve
2; retrieve 3; retrieve 4; relocate 6 on the empty stack 1; retrieve 5; finally, retrieve 6.

Researchers have tackled this particular problem from two point of views. The first approach is
optimization-based and uses Integer Programming (Caserta et al. (2012), Petering and Hussein (2013),
Zehendner et al. (2015)), branch and bound (Zehendner and Feillet (2014), Ünlüyurt and Aydın (2012),
Expósito-Izquierdo et al. (2015)) or A∗ (Zhu et al. (2012), Tanaka and Takii (2014), Borjian et al. (2015)).
Because the problem is proven to be NP-hard by Caserta et al. (2012), the second approach is based on
quick and efficient suboptimal heuristics, such as the ones presented in (Caserta et al., 2012), Wu and
Ting (2010) or Wu and Ting (2012). In Kim and Hong (2006) and Zhu et al. (2012), lower bounds for
the CRP are introduced. General review and classification surveys of the existing literature on the CRP
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and related problems can be found in Stahlbock and Voß (2008), Steenken et al. (2004) and Lehnfeld and
Knust (2014).

One of the main assumptions of the CRP is full knowledge of the retrieval order of containers.
However, because truck arrival times at the terminal are quite unpredictable due to uncertain conditions,
the full information assumption is unrealistic. Nevertheless, new technology advancements such as
Truck Appointment Systems (TAS) and GPS tracking can help predict information about relative truck
arrival times: Hong Kong international Terminal (HIT) implemented the first TAS (1997) with 30-minute
time slots, for which truck drivers can register (Murty et al. (2005)). Benefits of TAS are studied by
Giuliano and O’Brien (2007) and Morais and Lord (2006). Recent information can be found in Phillips
(2015) and Bonney (2015). One common type of information is a list of groups of containers likely to
be retrieved within a given time window (time slots). Our study introduces the stochastic CRP (SCRP),
which relaxes the full information assumption, and considers the same information scenario, i.e., each
container belongs to a group (representing a time slot), and retrieval orders between containers of the
same group are equally likely.

Very few studies have tackled the SCRP, also referred to as CRP with Time Windows. In the original
model of Zhao and Goodchild (2010), each container is assigned to a group, or “time window” such
that all containers of a time window must be retrieved before any container of a later time window.
Furthermore, the relative retrieval order of containers within a given time window is assumed to be a
random permutation. For this model, Zhao and Goodchild (2010) develop a myopic heuristic (called
RDH) and study, in different settings with two or multiple groups, the value of information using RDH.
They conclude that a small improvement in the information system has a significant positive impact
on the number of relocations. More recently, Ku and Arthanari (2016) use the same model as in Zhao
and Goodchild (2010). After formulating the SCRP as a finite horizon dynamic programming problem,
they suggest a decision tree scheme to solve it optimally. They also introduce a new heuristic called ERI
(Expected Reshuffling Index), which outperforms RDH, and they perform computational experiments
based on available test instances. Finally, there are two recent studies related to the SCRP, one on
the Online Container Relocation Problem by Zehendner et al. (2016), and the second on an asymptotic
average case analysis by Galle et al. (2016).

Our work starts by introducing a new way to model information, referred to as the batch model. This
model applies in the case of high frequency retrievals of containers. The order of unknown containers
is revealed by batch: for each group of containers, the full order of these containers is revealed and
decisions to retrieve all these containers have to be made before any new information is revealed. This
model differs from the one introduced by Ku and Arthanari (2016), in which containers are revealed one
at a time (the online model). We derive a new family of lower bounds for which we show theoretical
properties, and develop two new fast and efficient heuristics. Building on structural properties of the
SCRP and taking advantage of the properties of the aforementioned lower bounds, we propose a novel
optimal algorithm scheme based on decision trees and pruning strategies referred to as Pruning-Best-
First-Search (PBFS). Due to the increasing complexity of the problem when time windows are “large”,
we introduce a second novel randomized algorithm referred to as PBFSA (PBFS-Approximate). It builds
upon PBFS and Hoeffding’s inequality to derive a sampling strategy resulting in an average error that
we bound theoretically. Finally, we provide extensive computational experiments based on an existing
set of instances. Various experiments are presented to show the efficiency of PBFS and PBFSA in different
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settings using existing instances presented in Ku and Arthanari (2016). The last experiment is used to
conjecture the optimality of the leveling heuristic in the online model with no-information.
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Ünlüyurt, T. and Aydın, C. (2012). Improved rehandling strategies for the container retrieval process.
Journal of Advanced Transportation, 46(4):378–393.

Wu, K.-C. and Ting, C.-J. (2010). A beam search algorithm for minimizing reshuffle operations at container
yards. International Conference on Logistics and Maritime Systems, September, pages 703 – 710.

Wu, K.-C. and Ting, C.-J. (2012). Heuristic approaches for minimizing reshuffle operations at container
yard. Proceedings of the Asia Pacific industrial engineering & management systems conference, pages 1407 –
51.

Zehendner, E., Casserta, M., Feillet, D., Schwarze, S., and Voß, S. (2015). An improved mathematical
formulation for the blocks relocation problem. European Journal of Operational Research, 245:415 – 422.

Zehendner, E. and Feillet, D. (2014). A branch and price approach for the container relocation problem.
International Journal of Production Research, 52(24):7159 – 7176.

Zehendner, E., Feillet, D., and Jaillet, P. (2016). An algorithm with performance guarantee for the online
container relocation problem. European Journal of Operational Research, 245:415 – 422.

Zhao, W. and Goodchild, A. V. (2010). The impact of truck arrival information on container terminal
rehandling. Transportation Research Part E: Logistics and Transportation Review, 46(3):327–343.

Zhu, W., Qin, H., Lim, A., and Zhang, H. (2012). Iterative deepening A* algorithms for the container
relocation problem. IEEE Transactions on Automation Science and Engineering, 9(4):710–722.

4

http://www.wsj.com/articles/southern-california-ports-to-try-trucking-appointment-system-1440711102
http://www.wsj.com/articles/southern-california-ports-to-try-trucking-appointment-system-1440711102


INFORMS TSL 
First Triennial Conference  July 26-29, 2017 Chicago, Illinois, USA 

27 | P a g e  
 

Multimodal Transportation Services  
FD1: Maritime Shipping and Fleets 
Friday 4:30 – 6:00 PM           
Session Chair: Stein W. Wallace 

 

4:30  Speed Optimization Across Different Emission Control Zones 
 1Line Reinhardt*, 2Christos Kontovas 
 1Aalborg University, 2Department of Maritime and Mechanical Engineering-Liverpool John Moores 

University 
  
5:00 A Column-Row-Generation Approach to Liner Shipping Network Design 
 Jun Xia, Zhou Xu* 
 Hong Kong Polytechnic University 
  
5:30 Planning for Charters: A Stochastic Maritime Fleet Composition and Deployment Problem 
 1Xin Wang*, 1Kjetil Fagerholt, 2Stein W. Wallace 
 1Norwegian University of Science and Technology, 2Norwegian School of Economics 
  

 

  



Speed optimization across different emission control zones.

L. Reinhardt and C. Kontovas

Maritime transport is the backbone of international trade and a key engine driving globalization.
In addition to being efficient from an economic perspective, the global maritime chain has to
significantly improve its environmental image (Psaraftis and Kontovas [5]). Air pollution from
ships such as NOx and SOx is currently at the center stage of discussion by the world shipping
community and measures with the aim at reducing the environmental externalities of maritime
transport will get increased attention.The introduction of emission control areas (ECAs) is one of
the air emissions related regulations faced by the industry and more regulations are planned in
the future, see Figure 1. However it is still uncertain how these regulations affect the maritime
companies and their operations. According to Stopford [6], the bunker cost is 35% to 50% of
operational cost of a vessel and according to Mærsk Line [1] around 21% of the company expenses
in 2013. The recent focus on emissions results is yet another problem for management to tackle in
order to ensure efficient maritime operations under these emission regulations.

Figure 1: Current and planned emission control areas.

The latest review on the maritime routing, see Christiansen et al. [2], highlights the fact that
mainly due to increasing price of bunker fuel, more attention has been devoted to sailing speeds
and the environmental impact of ships. This is also in line with the survey by Wang et al. [7]
who note that minimization of the environmental impact is becoming more important in designing
shipping networks and they analyze recent papers that deal with the optimization of vessel sailing
speed as a measure to reduce both operating costs and emissions. A recent paper by Fagerholt
et al. [3] optimizes the bunker cost and traversal point when traversing an emission control area
showing that the optimal speed and traversal point changes to ensure a lower overall cost.

In this presentation we apply the concepts presented by Fagerholt et al. [3] to the area of
liner shipping considering scheduling and transit times as well. The emissions of CO2 and SOX

under the cost minimized operations satisfying emission regulations are evaluated to see if the
regulations may have undesired side effects. The same ideas are used to evaluate the cost and
emission consequences of proposed policies on liner shipping operations. These Models can also be
used to compare different policies.
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1 Problem and Model

The problem presented here is to evaluate the effects of the emission regulations on the sailing
speeds of the vessels and to evaluate the emissions of the vessel when minimizing bunker cost
alone compared with minimizing bunker cost combined with external costs. The work is primarily
relevant for vessels sailing crossing the ECA zones borders. In the speed optimization models we
include the transit restrictions.

1.1 Model

The model presented below is related to a liner shipping company that seeks to minimize costs by
optimising speed under the constrains of predefined transit times.

type notation description

sets
L set of legs where l ∈ L is a leg on the service.
Q set of demands defined by a route (as set of legs l ∈ L) between two ports A to B.
Pl set of secants used for approximating the bunker curve on leg l ∈ L

parameters

Wr number of weeks used for the round trip of a service
Fw the frequency of the vessels in hours. Here it is always 168 hours (weekly).
Pl the port stay of leg l ∈ L
Tm
l minimum time used for sailing leg l ∈ L (at maximum speed)
Hq transit time requirement of demand q ∈ Q
fl has value 1 if leg l is a start leg of a service and zero otherwise.
φp
l gradient of secant p ∈ P of leg l ∈ L
ωp
l y-axis intersection of secant p ∈ P of leg l ∈ L

variables
tdl (continuous) departure time of leg l ∈ L at its end port
tal (continuous) arrival time of leg l ∈ L at its end port
Cl (continuous) cost of sailing leg l ∈ L

Table 1: Overview of notation used in the model

An overview of the notation can be seen in Table 1. Moreover we use the notation (l′, l) ∈ L to
indicate that l′ is the previous leg of l. Legs l ∈ L that are partly in different emission zones are
separated in to a leg for each emission zone.

M1 : min
∑

l∈Leca

D0.1%Cl +
∑

l∈L\Leca

D380Cl (1)

tal − tdl′ + FwWrfl ≥ Tm
l , ∀r ∈ R, (l′, l) ∈ Lr (2)

φp
l (tal − tdl′ + FwSrfl) + ωp

l ≤ Cl, ∀r ∈ R, (l′, l) ∈ Lr, p ∈ Pl (3)∑
(l,l′)∈Lq

(
tdl − tdl′ + FwSrfl

)
− P s

q ≤ Hq, ∀q ∈ Q (4)

tal , t
d
l ≥ 0, Cl ≥ 0, ∀r ∈ R, l ∈ Lr (5)

The objective (6) minimizes the sum of bunker cost where D0.1% is the bunker price for fuel,
BW0.1%, used in ECA and D380 is the bunker price for the fuel, BW380, which contains 3.5%
Sulphur. For the bunker prices we use the Bunkerworld 380 Index (BW380) and Bunkerworld 180
Index (BW0.1%) which are unweighted simple averages of all BBP prices for IFO380 and IFO 180
respectively. The values used for D0.1% and D380 can be seen in Table 3. The parameter Cl is the
bunker cost on leg l. Constraints (2) ensure that the legs are not traversed at a faster speed than
the maximum speed of the vessel. For every leg the consumption is restricted by a set of linear
functions represented by constraints (3). In constraints (3) the variable φpl is the slope of secant
pl on leg l ∈ L and ωp

l is the intersection of the secant. The transit time is ensured to be below
the requirement Hq for demand q ∈ Q with constraint (4).
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Pollutant $/Ton parameter
CO2 37 ECO2

SOx 12700 ESOx

Table 2: External costs of emission per ton of CO2 and SOx presented in [4].

Bunker type CO2 (Ton) SOx (Ton) price $
BW380 3.114 0.07 370
BW0.1% 3.206 0.002 620
Parameter V380, V0.1% S380, S0.1% D380, D0.1%

Table 3: Emission of CO2 and SOx of the two bunker types BW380 used in areas with no regulations
and BW0.1% used in the Baltic emission control zone.

Clearly this model finds the optimal speeds on the legs so that the fuel cost is minimized under
the regulations imposed by the emission control zones. However minimizing the cost of the bunker
may not result in the best emission profile.

To investigate the sulphur and CO2 emission profile of the solution we look at the external
costs of CO2 and SOx. Table 3 shows the amount of CO2 and SOx emitted when using the two
bunker types BW380 and BW0.1% which are respectively used outside and inside the emission
control zone.

The information from Table 2 and 3 is used for a new objective which includes the external
costs of CO2 and SOx ensuring that the cost of society is considered along side the bunker cost
when scheduling a path of a vessel.

M2 : min
∑

l∈Leca

(D0.1%+V0.1%ECO2 +S0.1%ESOx)Cl+
∑

l∈L\Leca

(D380+V380ECO2 +S380ESOx)Cl (6)

The set Leca ⊂ L is the subset which only contains the legs which are inside the ECA zone.

2 Results

We have tested the model and the two objectives on a test based on the service presented in Figure
2. In the test instance two transit time constraint to be satisfied are introduced.

Figure 2: Liner shipping service used for preliminary tests.

The preliminary results show that we get a
In Table 4 the costs of the solutions achieved by using model M1 and M2 are shown. For

M1 we have calculated the external costs of the emission for the solution which minimizes the
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Test Bunker cost Emission cost total cost Avg Speed vessels
BW380 BW0.1%

M1 838815 432774 1271559 16.1 13.7 3
M2 876078 322133 1198211 13.0 15.8 3

Table 4: Preliminary test results of running M1 and M2 on the test instance.

Zone M1, Ton M2, Ton
CO2 SOx CO2 SOx

BW380 1154 25.946 750 16.852
BW0.1% 1348 0.841 1789 1.116
Total 2502 26.787 2539 17.968

Table 5: Test results showing the total CO2 and SOx emissions for the solutions to M1 and M2.

bunker cost. It is clear that when only looking at bunker costs then the solution of M1 is 4.35%
less expensive that that of M2 however the external costs of the solution of M1 is 29.31% larger
than that achieved by the M2 model. Considering both external costs and bunker costs then the
solution of M2 is 5.94% cheaper than that of M1.

3 Conclusion

The preliminary results show that although emission control areas may help to reduce the emission
inside them, companies have to increase the speeds, and thus emissions, outside the control areas.
In October 2016, IMO decided that by 2020 the global sulfur cap in bunkers should be dropped
to 0.5%. Additional tests should, thus, be performed on future scenarios. In addition, future work
includes the investigation of route planning under these sulfur requirements.
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1 Introduction

In liner shipping, container ships rotate among seaports to transport cargos with a regular service
frequency [6]. The sequences of port calls constitute a service network on which carriers operate
their daily transportation services. Due to the capricious nature of the shipping industry, carriers
constantly need to adjust their service networks to maintain their competitiveness in response to
an ever-changing market. Liner Shipping Network Design (LSND) aims at creating a set of regular
services (or rotations) for a designated fleet of oceangoing ships to transport containerized cargos.
Containers can be transshipped from one ship to another at an intermediate port in order to improve
a carrier’s transportation efficiency, as well as to extend its market coverage. The major objective of
LSND is to maximize the carrier’s total profit, this being the total revenue from satisfied demands
minus the total operating cost, which includes any transshipment costs.

LSND has been widely investigated in recent literature (see [7] for a comprehensive review). It is
well known that optimizing LSND, even with zero transshipment cost, is computationally challenging,
as it is at least as hard as solving a set-covering problem, which is known to be strongly NP-hard [4].
Without transshipment costs, LSND can be seen as a variant of service network design with asset
management (SNDAM), where multiple types of assets are to be deployed on cycles to maintain
certain frequencies of designated services. Many existing models for SNDAM, such as those in
[2, 3, 5], are derived based on a multiple commodity flow (MCF) network, in which each arc has
a capacity that is aggregated among its passing cycles so as to impose a limit on the flow of its
carrying cargo. Due to the decomposable structure of these models, the column generation approach
can often be applied in solving their linear programming (LP) relaxation effectively, which provides
bounds on optimal objective values that are useful in promoting the developments of exact methods
for solving for the problem. However, in these studies, the cost of transshipment is ignored, mainly
due to the hardness of capturing exact amounts of transshipped cargos in these MCF based models.

There are only a few existing models that have taken into account transshipment costs for
LSND [1, 11, 4, 9, 8]. From these models, it can be seen that including the transshipment costs
has complicated the mathematical formulations of LSND, as both the number of decision variables
and the number of constraints are proportional to the number of all feasible rotations, which can
be exponentially many. Therefore, even solving a linear programming relaxation of these models
becomes very challenging, causing the traditional column generation approach to be no longer ap-
plicable. As a result, most existing works focus only on finding heuristic solutions, and are unable
to report any optimality gaps that can be used to measure the quality of their obtained solutions.

∗Corresponding email: lgtzx@polyu.edu.hk
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The contribution of this work is threefold. First, we propose for LSND a new mixed-integer
linear programming (MILP) model where transshipment costs are well captured. Since, in this new
model, both decision variables (columns) and constraints (rows) are also proportional to the number
of feasible rotations, there can be a large number of columns and rows, which makes the model very
challenging to solve. Second, in this work we have developed a new optimization method, referred
to as a Column-Row-Generation (CRG) approach, to solve the LP relaxation of the new model,
which provides an upper bound on the optimal solution for LSND. Third, we have embedded this
CRG approach into a branch-and-price framework to compute optimal or near-optimal solutions for
LSND.

2 Problem Formulation

We formulate the optimization problem of LSND based on a newly defined planning network that
consists of voyage nodes, transshipment nodes, voyage arcs, and transshipment arcs. Figure 1 il-
lustrates such a network with two rotations. Port calls in different rotations are differentiated, and
cargos on the transshipment arcs are used to represent the transshipment costs in the objective
function. Ships sail at the designed speed, and all services need to maintain a weekly frequency.

We use a vector of integer variables y ∈ Y to determine the rotations that are selected to be
operated, use a vector of continuous variables x ∈ X to determine the cargo demands that are
fulfilled, and use a vector of continuous variables f ∈ F to represent the cargo flows carried by each
operated rotation. For f, it must satisfy flow balance constraints on the voyage nodes of each operated
rotation. For f and x, they together need to satisfy flow balance constraints on the transshipment
nodes. For x, it needs to satisfy that the fulfilled demand for each origin-destination pair cannot
exceed the maximum available amount. For y, it must satisfy that the number of deployed ships
cannot exceed the available fleet size. For f and y, they together need to satisfy that for each
rotation, the cargo flows on each voyage arc of the rotation cannot exceed the total capacity of ships
deployed to the rotation. Accordingly, let C1 and C2 denote the flow balance constraints on voyage
nodes and transshipment nodes. Let C3, C4 and C5 denote the demand, fleet and capacity constraints,
respectively. Note that constraints C1 and C5 are defined for each rotation. Given a revenue vector
p, a cargo based cost vector c, and a rotation based cost vector a, we can obtain the following MILP

Figure 1: An example of the planning network with two rotations
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model for the optimization problem of LSND:

(P) max px− cf− ay

s.t. f ∈ C1; (f,x) ∈ C2; x ∈ C3; y ∈ C4; (f,y) ∈ C5.

3 Solution Method

In model (P), both the total number of decision variables and the total number of constraints grow
with the total number of feasible rotations. It is therefore not affordable to directly solve the model
using a general integer programming solver, especially when a large number of feasible rotations have
to be taken into account. Moreover, since there are constraints of (P) that are defined each rotation,
such as constraints C1 and C5, the traditional column generation approach is not applicable to solve
the LP relaxation of the model.

In this work, we extend the column generation approach to a novel CRG approach, so as to solve
the LP relaxation of model (P) effectively. Different from many other row (or cut) generation tech-
niques that produce valid inequalities to strengthen the relaxations of integer programs (see [10, 12]
for example), the rows generated in our CRG approach interrelate with the rotations, which are nec-
essary to validate the formulation of model (P). The idea behind the CRG approach is to work on a
restricted master problem (RMP) that consists of only variables and constraints that are associated
with a subset of rotations. New rotations are generated iteratively to induce a simultaneous genera-
tion of new columns and rows added to the restricted formulation. The CRG approach continues to
generate and add new columns and rows until no new rotations can be found to improve the optimal
objective value of the RMP. Compared with the traditional column generation approach, the most
critical step of the new CRG approach is the construction of values of the missing dual variables
when some constraints of C1 and C5 are absent in the RMP. To tackle this, we have proposed several
effective construction methods. Based on their constructed values, new rotations can be efficiently
evaluated and generated. When the CRG approach stops iterations, it can be proved that the op-
timal objective value of the RMP equals the optimal objective value of the LP relaxation of model
(P), which provides a valid upper bound for model (P). Based on this, we embed the CRG approach
into a branch-and-price framework that can find optimal or near-optimal solutions to model (P).

4 Computational Results

First, in order to compare the performances of our new CRG approach and the general MIP solver
CPLEX, we have randomly generated test instances based on the data of Baltic (12 ports, and
22 origin-and-destination pairs for demands) and the data of WAF (20 ports, and 37 origin-and-
destination pairs for demands) in a benchmark suite provided by [4]. These instances have different
numbers of ports (ranging from 6 to 18) and different numbers of origin-destination pairs for demands
(ranging from 6 to 34). Each random instance is represented by “pX-dY-Z”, implying that the
instance involves “X” ports and “Y” origin-destination pairs for demands, and is generated from
data “Z”, in which the data of Baltic and the data of WAF are denoted by “Z=b” and “Z=w”,
respectively.

To apply CPLEX to solving model (P), we have to generate all feasible rotations in advance. We
implement the branch-and-price algorithm with our CRG approach embedded by C. We set the time
limit as two hours for both CPLEX and the branch-and-price algorithm. The results are reported
in Table 1, where columns “OBJ” present the objective values of solutions obtained, columns “UB”
present the upper bound values, columns “GAP” present the optimality gaps, columns “TIME”
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Table 1: Comparison with CPLEX for solving instances that are randomly generated.

CPLEX Branch-and-price

INST COL OBJ UB GAP(%) TIME OBJ UB GAP(%) TIME

p6-d6-b 732 102797 102797 0.0 13 102797 102797 0.0 1
p6-d6-w 395 684748 684748 0.0 55 684748 684748 0.0 3
p6-d10-b 511 277019 277019 0.0 27 277019 277019 0.0 3
p6-d10-w 467 1074382 1074382 0.0 2277 1074382 1074382 0.0 2889
p9-d12-b 4190 368314 476473 22.7 7200 374040 374040 0.0 3
p9-d12-w 4702 1172185 1619487 27.6 7200 1281405 1281405 0.0 2631
p9-d15-b 4393 612629 943813 35.1 7200 712921 712921 0.0 61
p9-d15-w 4702 2996155 3590359 16.6 7200 3202709 3247785 1.4 7200
p12-d20-w 901184 n/a n/a n/a n/a 3632189 3878197 6.3 7200
p12-d22-w 893776 n/a n/a n/a n/a 2710615 2906484 6.7 7200
p15-d26-w 957809 n/a n/a n/a n/a 3734023 4127781 9.5 7200
p15-d28-w 909432 n/a n/a n/a n/a 5121447 5553856 7.8 7200
p18-d32-w > 109 n/a n/a n/a n/a 5579441 6240528 10.6 7200
p18-d34-w > 109 n/a n/a n/a n/a 5405048 6175337 12.5 7200

present the computation times, and column “COL” presents the number of all feasible rotations that
need to be generated for CPLEX.

From Table 1, it can be seen that when all feasible rotations are generated in advance, CPLEX
can, within the time limit, solve the instances with 6 ports to optimality, and achieve an optimality
gap of 16.6% ∼ 35.1% for the instances with 9 ports. Since the number of feasible rotations increases
exponentially with the network size, CPLEX fails to output any feasible solution for larger instances
within the time limit, simply reporting “n/a”. In comparison, our branch-and-price algorithm solves

all the instances with 6 ports and most of the instances with 9 ports to optimality within 1 hour,

significantly outperforming CPLEX in terms of both solution quality and time efficiency. For other
instances, as the size of the test instances increases, our branch-and-price algorithm can produce
near-optimal solutions with optimality gaps varying from 1.4% to 12.5%.

Next, to compare the performances of our new CRG approach and the existing solution methods
proposed in [9] (denoted by Plum) and in [4] (denoted by Brouer), we use six original benchmark
instances of the data of Baltic and WAF, these being indicated by p12-d22-b-l, p12-d22-b-b, p12-
d22-b-h, p20-d37-w-l, p20-d37-w-b, and p20-d37-w-h, respectively. For these instances, the results
for Plum’s method are available in [9]. Note that the results reported in [4] for Brouer’s method
are for the case where ships’ speeds are not given in advance and the operated rotations can be
with a bi-weekly frequency, which is different from the case of our problem. We therefore have to
implement Brouer’s method and adapt it for our problem. For both our branch-and-price algorithm
and Brouer’s method, we set the time limit to be two hours, and for Brouer’s method, we further set
the limit for the number of iterations to be 10000.

The results are reported in Table 2. Since Brouer’s method is only a heuristic method, no
upper bounds can be obtained from it to evaluate the optimality gaps. Therefore, we state “n/a”
in its column “GAP”. From Table 2, it can be seen that our branch-and-price algorithm always

produce better solutions than Plum’s and Brouer’s methods, and that the obtained improvements

are substantial. Compared with Plum’s method, our branch-and-price algorithm has also produced

significantly better optimality gaps, ranging from 2% to 18.5%. It is worth noting that for some
instances, the objective values of the solutions produced by our branch-and-price algorithm are even
bigger than the upper bounds reported in [9] for Plum’s method. This is because for the model in
[9], the maximum number of rotations allowed to be operated is limited, so that their upper bounds
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Table 2: Comparison with Plum’s and Brouer’s methods for solving the benchmark instances

Plum Brouer Branch-and-price

INST COL OBJ GAP(%) TIME OBJ GAP(%) TIME OBJ GAP(%) TIME
p12-d22-b-l 385323 427485 30.0 3600 425687 n/a 820 662766 3.6 7200
p12-d22-b-b 932654 408771 39.0 3600 490681 n/a 892 748618 2.0 7200
p12-d22-b-h 955985 636152 3.2 3600 556698 n/a 1516 785773 2.1 7200
p20-d37-w-l > 109 1940817 67.9 10800 3902718 n/a 7200 5106296 18.5 7200
p20-d37-w-b > 109 3372618 47.3 10800 4278420 n/a 7200 5523499 18.3 7200
p20-d37-w-h > 109 3899767 41.0 10800 4456830 n/a 7200 6009782 13.8 7200

are not valid when evaluating our solutions, which are derived without such restrictions.
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1 Problem Statement

This study considers a real-life chartering problem faced by Odfjell, a Norwegian public

listed company based in Bergen, Norway. As a leading company in the global market

for the transportation and storage of bulk liquid chemicals, Odfjell provides services on

trading routes all around the world. Each year by the end of October, Odfjell determines

the time-charter contracts to enter into for the following year as a supplement to the

capacity of the fleet they currently own. On a time charter, a daily hire is paid to the

ship owner while the shipping company also bears the sailing costs including fuel and

port/canal fees etc. These time charters represent a significant portion of Odfjell’s annual

expenses and will decide how many ships of each type to charter in, and for how long they

are to be hired.

Several aspects of the future market, such as customer demands, can be highly un-

certain. For example, some transport contracts only state percentages of the customers’

actual production rather than absolute amounts, which make the committed volumes

needing transport uncertain. As a result of these uncertainties, the imbalances between

supplies and demands for transport capacity in different regions are common in chemical

shipping. But this also results in possibilities of picking up optional cargoes from the

spot market. Therefore, with the underlying market uncertainties (such as contractual

demands and the size of the spot market) affecting the shipping capacity required, the

decision making on charters has become rather complicated.

This chartering problem can be seen as a tactical fleet composition problem with a focus

on capacity adjustment given an existing fleet (Hoff et al., 2010). However, without taking

into consideration the operational details to some degree, fleet composition decisions may

be based on a too simplified view. Hence, an integration of deployment or routing into

the fleet composition decisions is warranted in most cases. In this study, we include fleet

deployment decisions to support the capacity evaluation necessary for the making of the

charter plan.
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The contribution of this study is to present a novel stochastic programming model for

the chartering problem, taking into account some of the uncertainties affecting the market.

These include stochastic demands, fuel prices, charter rates and freight rates. Even though

the model is rather general and applicable to many shipping segments and companies, we

demonstrate its use to the case of Odfjell, and focus on the decisions for time charters.

We show how the charter plans change as we alter some of the modeling: we vary the

level of detail in the modeling of fleet deployment; we use the deterministic version of

the original stochastic model; we assume uncorrelated random variables; and we treat

speed optimization in different ways. We also show how different chartering plans affect

the company’s overall performance, in order to provide guidance in helping the company

make its chartering decisions.

2 Stochastic Fleet Composition and Deployment Model

The planning period of the charter plan is divided into two periods, P-1 (January to

March) and P-2 (April to December). The shipping company is quite sure of the demands

(contractual and spot) they are facing and is also confident about its prediction on fuel

prices, spot rates etc., for P-1; but much less so for P-2, due to high market volatility.

The charter plan then consists of two sub-decisions: the first determines before P-1 how

many and what types of ships to charter in for the next year; and the second makes further

adjustments to the chartered-in ships, between P-1 and P-2, by determining whether to

increase or decrease the charters for P-2. With a fleet of owned and chartered-in ships, the

fleet deployment decisions, taking into account speed optimization (see Andersson et al.,

2015), allocate shipping capacity to loops. Each loop is defined as a round-trip route

servicing a number of trade lanes that start and end in the same geographic area, where a

trade lane represents a transportation arrangement from one geographic area to another

which contains one or more contracts. The mathematical formulation of the scenario-based

two-stage stochastic model is as follows, with the notation shown in Table 1.

Table 1: Notation

Sets

V,K, C the set of ship types, capacity types and contracts, respectively.

N ,R the set of trade lanes and loops, respectively.

Ev the set of speed alternatives for ship type v.

Rv ⊆ R the set of loops that can be sailed by ship type v.

Riv ⊆ R the set of loops servicing trade lane i that can be sailed by ship type v.

Ci ⊆ C the set of contracts serviced by trade lane i.

Vi ⊆ V the set of ship types that can sail trade lane i.

Ck ⊆ C the set of contracts compatible with capacity type k.

Kc ⊆ K the set of capacity types compatible with contract c.

S the set of scenarios.

Deterministic Parameters

Nv no. of ships of type v owned by the shipping company.
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M1
v ,M

2
v no. of available service days for a ship of type v during P-1 and P-2, respectively.

Qvk volume of capacity type k installed on ship type v.

Tvre total travel time for ship type v to complete a round trip on loop r with speed alternative

e, including sailing time and time spent at ports, etc.

F 1
c , F

2
c frequency requirement of contract c in P-1 and P-2, respectively.

Dc demand of contract c in P-1.

CRT
vre cost for ship type v to complete a round trip on loop r with speed alternative e in P-1,

including fuel cost, port fees, canal tolls, etc.

CI
v daily charter-in rate for a ship of type v on a “long-term” charter (P-1 plus P-2).

C	
v , C⊕

v (both positive values) adjusting factors for “short-term” charters, representing the ad-

ditional daily charter-in rate for ship type v if hired only for P-1, and only for P-2,

respectively.

RO
v revenue of chartering out a ship of type v per day in P-1.

RSP
ik revenue of delivering one unit of spot cargo with capacity type k on leg i in P-1.

DSP
ik no. of units of spot cargo available on trade lane i that are compatible with capacity type

k in P-1.

Stochastic Parameters

ps the probability of scenario s taking place in P-2.

Dcs demand of contract c for scenario s in P-2.

CRT
vres cost for ship type v to complete a round trip on loop r with speed alternative e for scenario

s in P-2.

CI
vs cost of chartering in a ship of type v per day for scenario s in P-2 (“on the spot” extra

time charters).

RO
vs revenue of chartering out a ship of type v per day for scenario s in P-2.

RSP
iks revenue of delivering one unit of spot cargo with capacity type k on trade lane i for

scenario s in P-2.

DSP
iks no. of units of spot cargo available on trade lane i that are compatible with capacity type

k for scenario s in P-2.

Decision Variables

wv (charter plan) no. of ships of type v chartered in at the start of P-1.

w	
v , w⊕

v (charter plan) no. of ships of type v to reduce or add (based on wv), respectively, at the

end of P-1.

xvre, xvres no. of round trips sailed by a ship of type v on loop r with speed alternative e in P-1,

and for scenario s in P-2.

yvs no. of days of extra charter-in for ship type v in scenario s in P-2.

zv, zvs no. of days of chartering out ship type v in P-1, and for scenario s in P-2.

qivkc, qivkcs volume of contract c carried by capacity type k installed on ship type v on trade lane i

in P-1, and for scenario s in P-2.

qSP
ivk, q

SP
ivks volume of spot cargo carried by capacity type k installed on ship type v on trade lane i

in P-1, and for scenario s in P-2.

min
∑
v∈V

(
CI
vM

1
vwv + CI

vM
2
v (wv − w	v + w⊕v ) + C	v M1

vw
	
v + C⊕v M2

vw
⊕
v

)
(1.a)

+
∑
v∈V

∑
r∈Rv

CRT
vrexvre −

∑
v∈V

RO
v zv −

∑
i∈N

∑
v∈V

∑
k∈K

RSP
ik qSPivk (1.b)

+
∑
s∈S

ps(
∑
v∈V

∑
r∈Rv

CRT
vresxvres +

∑
v∈V

CI
vsyvs −

∑
v∈V

RO
vszvs −

∑
i∈N

∑
v∈V

∑
k∈K

RSP
iksq

SP
ivks) (1.c)
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s.t. ∑
r∈Rv

∑
e∈Ev

Tvrexvre + zv = M1
v (Nv + wv) v ∈ V (1)

∑
v∈Vi

∑
r∈Riv

∑
e∈Ev

xvre ≥ F 1
c i ∈ N , c ∈ Ci (2)

∑
v∈Vi

∑
k∈Kc

qivkc = Dc i ∈ N , c ∈ Ci (3)

∑
r∈Riv

∑
e∈Ev

Qvkxvre ≥
∑

c∈Ci∩Ck

qivkc + qSPivk i ∈ N , v ∈ Vi, k ∈ K (4)

∑
v∈Vi

qSPivk ≤ DSP
ik i ∈ N , k ∈ K (5)

and (2nd-stage constraints)∑
r∈Rv

∑
e∈Ev

Tvrexvres + zvs = M2
v (Nv + wv + w⊕v − w	v ) + yvs v ∈ V, s ∈ S (6)

∑
v∈Vi

∑
r∈Riv

∑
e∈Ev

xvres ≥ F 2
c i ∈ N , c ∈ Ci, s ∈ S (7)

∑
v∈Vi

∑
k∈Kc

qivkcs = Dcs i ∈ N , c ∈ Ci, s ∈ S (8)

∑
r∈Riv

∑
e∈Ev

Qvkxvres ≥
∑

c∈Ci∩Ck

qivkcs + qSPivks i ∈ N , v ∈ Vi, k ∈ K, s ∈ S

(9)∑
v∈Vi

qSPivks ≤ DSP
iks i ∈ N , k ∈ K, s ∈ S (10)

variable domains

wv, w
⊕
v , w

	
v ≥ 0 v ∈ V (11)

wv ≥ w	v v ∈ V (12)

xvr, xvrs, yvs, zv, zvs ≥ 0 v ∈ V, r ∈ Rv, s ∈ S (13)

qivkc, qivkcs ≥ 0 i ∈ N , v ∈ Vi, k ∈ K, c ∈ Ci ∩ Ck, s ∈ S (14)

qSPivk , q
SP
ivks ≥ 0 i ∈ N , v ∈ Vi, k ∈ K, s ∈ S (15)

The objection function minimizes the sum of the chartering costs (1.a), the operating

costs in P-1 (1.b) and the expected operating costs in P-2 (1.c). Constraints (1) state that

all transport availability of the fleet is used either through the carrier’s own operations

or chartered out. Constraints (2) ensure the satisfaction of the frequency requirement of

every contract and Constraints (3) the demand requirement. Constraints (4) ensure that

the total volume of capacity type k installed on ship type v sailing on trade lane i is

respected, and may be used to carry either contractual or spot cargoes. Constraints (5)

restrict the amount of spot cargo carried by the shipping company within the size of the

spot market for the respective capacity type. Constraints (6) - (10) are the stochastic P-2

versions of constraints (1) - (5) for the second stage.
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3 Computational Study

We present a case study based on realistic data from Odfjell, with a network of 9 geographic

areas and 22 trade lanes. We first study the effects of altering the level of detail in the

modeling of fleet deployment by changing the maximum number of trade lanes making up

a loop. Our results show that increasing the highest loop cardinality from two to three

leads to a 6.8% reduction in total costs, but when increasing such value from three to four

or higher the improvements are less significant (less than 1%) while the run times grow

dramatically (solved with CPLEX). It is further shown that those loops with three trade

lanes and low ballast sailing ratios are potentially of great value to the shipping company.

We then evaluate the charter plans produced using (1) the deterministic model where

all uncertain parameters are replaced by their means (as most companies do in the indus-

try), (2) the deterministic model with higher demand expectation and (3) the stochastic

model but without considering correlations among the stochastic demands, freight rates

and charter rates, etc. Our results show that using the deterministic model with mean

values gives a loss of almost 13% in total costs compared to the optimal stochastic so-

lution, and such loss can be brought down to around 5% if higher deterministic demand

values are used as forecast. Also, disregarding correlation information leads to a loss of

4.9% even if the stochastic model is used. Therefore, the shipping company should, where

possible, use the stochastic model and take both individual distributions and correlation

information into account; and plan with higher demand expectation than the means if

the company has to use the deterministic model. However, due to the incompatibilities

between trade lanes and ship types, and between contracts and capacity (tank) types,

deterministic models often struggle with providing the “correct” combination (mix) of the

different types of ships to charter in.

In addition, we investigate how much we can gain from taking speed optimization into

account when making the charter decisions, since in practice this type of tactical plan

is usually made assuming one (design) speed for each ship type. Our results show that

integrating speed optimization in the stochastic fleet composition and deployment model

is beneficial and leads to an improvement of almost 10% percent in total costs.
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The load planning problem for double-stack trains
at intermodal terminals

Serena Mantovani ∗ † Gianluca Morganti †

Nitish Umang † Teodor Gabriel Crainic † ‡

Emma Frejinger † Eric Larsen †

1 Introduction

In this work, we present a general methodology that addresses the load planning
problem for double-stack intermodal trains. It arises at intermodal rail terminals
that are major components of any intermodal transportation system providing
space and equipment for, e.g., classifying, storing and unloading/loading contain-
ers. The problem consists in assigning containers to outbound railcars where each
railcar has one or several platforms (each platform has in turn one or two slots:
bottom and, in case of double-stack, top slot). This is challenging because there
are many different railcar and container types which give rise to complicated load-
ing rules that depend on the characteristics of both. The proposed methodology
can be used to provide decision support to terminal managers.

Most of the studies in the literature focus on the single-stack load planning
problem. In this case, the loading problem is rather simple and the aim is to
minimize handling costs in the yard (e.g., Corry and Kozan, 2008) or train set-up
costs (Bruns and Knust, 2012). To the best of our knowledge, Lai et al. (2008) is
the only study dealing with the double-stack load planning problem. A number
of important aspects are, however, ignored in this work. First, they address the
matching among containers and railcar types but assume that it is independent
over platforms, which is not true in our case. Second, center-of-gravity restric-
tions are not considered. We contribute to the literature by providing a general
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methodology that can address the load planning problem accounting for all crucial
loading constraints. We present numerical results for the North American market.

Given a set of containers stored in the terminal and a departing train, the
problem we consider consists in selecting the optimal set of containers to load and
the optimal way of loading them, using the maximum of the available capacity.
We address this problem for double-stack trains, where the load planning problem
is challenging because of a number of loading rules that depend on container and
railcar characteristics, and on the way they match together. The size, the location
of the load-bearing along the length of the container, the type (e.g., tanker and
dangerous-goods containers have restrictions with respect to the position in the
stack they may occupy) of containers determine how containers can be stacked.

Intermodal trains are composed of sequences of railcars, designed to carry
single- or double-stacked containers. Railcars differ on attributes such as the num-
ber and the length of platforms and the weight holding limit. Loading rules depend
on these characteristics. For the North American market, rules for matching con-
tainers and railcar types are presented in the AAR guide (Association American
Railroads, 2014). It provides information on the container sizes that can be loaded
in the bottom and top slot of each platform. We refer to them as containers-to-cars
matching rules. We note that the guide reports the loading capabilities but it does
not show all the possible ways of matching. Moreover, the loading patterns for
certain platforms may depend on the loading of the others, thus, it is not possible
to decompose the loading rules by platforms.

2 Methodology

We model the matching among types of containers and railcars through loading
patterns. This is similar to Corry and Kozan (2008) and Lai et al. (2008), but we
account for dependencies between the loading of the platforms of the same railcar.
This leads to sets of loading patterns with large cardinality. We also model weight
holding restrictions. First, the total weight of the containers loaded on a given
platform cannot exceed its weight holding capacity. Second, the vertical center of
gravity cannot exceed a given threshold which imposes a maximum weight limit
on containers loaded in top slots.

We present an integer linear programming (ILP) formulation, where we have
two types of decision variables. First, binary variables assigning containers to
slots and second, binary variables assigning loading patterns to railcars. The
objective of the model seeks to minimize the total cost of the containers left on
the ground and of the used railcars that are assigned at least one container. This
generalized cost leads to the maximization of the slot utilization on the selected
railcars. The ILP formulation has a number of different types of constraints:
assignment and loading pattern constraints, weight capacity and center-of-gravity
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constraints as well as technical loading constraints and container-cargo specific
constraints including stacking restrictions.

3 Results

We present two numerical studies. The first one has the purpose to assess the
importance of modeling containers-to-cars matching and center-of-gravity restric-
tions. The second one, to analyze the computational time for large size instances
with different characteristics. Both studies use simulated data but with real rail-
cars (sampled from the types in the AAR Guide) and containers with realistic
characteristics.

In the first study, we fix the train length to 5,000 ft and we vary the com-
position of the railcars (four different types: 40 ft one/five platforms and 53 ft
one/five platforms). We build container sets by varying the proportion of 40 ft
and 53 ft containers in the instances. Moreover, we create three sets of contain-
ers using different weight assumptions: two deterministic settings that should not
have center-of-gravity issues (all containers have equal weight or 50% are light
and 50% are heavy) and 20 instances with random weight (drawn from empirical
distribution).

250 CONTAINERS AVAILABLE 25 FIVE 40’ PLATFORM RAILCARS AVAILABLE

INSTANCE DESCRIPTION LOADED CONTAINERS USED RAILCARS SOLUTION TIME [sec]

S1: 200 40ft containers and 50 53ft containers
1) Containers same weights 250 25 126.59
2) Containers half low and half high weights 250 25 132.83
3) Containers random weights 233 23.75 935.88

S2: 100 40ft containers and 150 53ft containers
1) Containers same weights 175 25 113.67
2) Containers half low and half high weights 175 25 125.89
3) Containers random weights 175 25 329.88

200 CONTAINERS AVAILABLE 20 FIVE 53’ PLATFORM RAILCARS AVAILABLE

INSTANCE DESCRIPTION LOADED CONTAINERS USED RAILCARS SOLUTION TIME [sec]

S3: 200 40ft containers
1) Containers same weights 200 20 514.81
2) Containers low and high weights 200 20 539.24
3) Containers random weights 200 20 733.83

S4: 0 40ft containers and 200 53ft containers
1) Containers same weights 200 20 429.88
2) Containers low and high weights 200 20 513.44
3) Containers random weights 200 20 859.54

Table 1: Importance of the matching problem and the center of gravity, five-
platform railcars: number of loaded containers, used railcars and solution time.

Because of limited space, we present only the results for five platform railcars
in Table 1. The first two columns show the number of loaded containers and the
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number of used railcars in the optimal solution. The third column shows CPLEX
solution time. We start the analysis of the results firstly focusing on the container-
to-car matching effect. In case of 40 ft platform railcars (settings S1 and S2), the
maximum number of containers that can be loaded on 250 slots is 250, but 53 ft
containers can only be loaded in top slots because of the platforms’ length. As
long as the weights are “favorable” (respects center of gravity) all available top
slots can be used to load 53 ft containers. The results show that this is not the
case for random weights. Indeed, there is a drop in the average number of loaded
containers, even when the sizes match well.

The 53 ft platform railcars (settings S3 and S4) are more flexible since they can
take 53 ft containers in any slot, but because of the railcar length, the maximum
capacity is less than for 40 ft railcars. Under all the weight conditions, it is possible
to load all the containers by simply placing the heaviest containers in bottom slots.

In a second numerical study, we draw railcars from the available types in the
North American fleet as well as containers of different sizes and weights. We use
three different train lengths: 2,000 ft (representative example for many countries
across the world), 6,000 ft (long train) and 10,000 ft (extremely long train). For
each of the train lengths we generate 20 sequences of railcars by sampling railcar
types. For each train length, and for each railcar sequence, we sample 10 sets
of containers, where the set size is 1.5 times the number of slots in the railcar
sequence. Given the excess demand, we expect to always achieve a near 100 %
slot utilization. The results reported in 2 show that all instances can be solved
to optimality in reasonable computational time. It takes considerably longer time
to solve instances with all container sizes (20, 40, 45, 48 and 53) compared to
instances with only 20 and 40 ft containers. This is due to the cardinality of the
sets of loading patterns.

Containers without Containers with
technical loading restrictions technical loading restrictions

Train length (ft) 20ft and 40ft All sizes 20ft and 40ft All sizes
2,000 7.11 13.10 7.95 14.36
6,000 184.59 450.96 639.37 661.04
10,000 967.42 4,010.52 1,963.78 8,266.35

Table 2: Average computational time in seconds

4 Conclusion

We presented a general methodology that addresses the load planning problem
for double-stack intermodal trains. We model containers-to-cars matching rules,
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center-of-gravity constraints, stacking rules and technical loading restrictions as-
sociated with specific container types and/or goods. We formulated the problem
as an integer linear programming (ILP) model. Results showed that ignoring
containers-to-cars matching and center-of-gravity restrictions may lead to an over-
estimation of the train capacity and to infeasible load plans. The results also
showed that we can solve realistic instances to optimality in reasonable time.

The model and results have not been presented in a conference before. A sub-
stantially different version of the model and other results were presented at the
ODYSSEUS conference in 2015. The article was submitted to EJOR on December
18, 2016.
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Tactical block and car planning for
intermodal trains

Gianluca Morganti ∗ † Teodor Gabriel Crainic † ‡

Emma Frejinger †

1 Introduction

Railroads are at the heart of freight transportation systems, moving a broad variety
of commodities long distances in a cost-effective and environmentally sustainable man-
ner. They are, in particular, a key element of the world-wide intermodal transportation
network, which displays a steady traffic growth, as illustrated by the the 5.3% annual
increase (average, since 1990) at North American ports (IAPH, 2015).

Efficient and profitable railroad activities require adequate planning of operations
and resources. We focus on the block and car tactical planning problem that arises in
intermodal rail transportation, using the North American market as a case study. There
are several studies in the literature focusing on the train blocking problem but the existing
models do not directly apply to intermodal trains. We thus propose a new model that
accounts for demand expressed in terms of numbers of containers of various types and
explicitly treats the assignment of these containers to railcars of different types. The
model then assigns railcars to blocks and blocks to trains. In the following, we provide
some background on intermodal rail transport to motivate our work, as well as a brief
literature review. We present a problem description and the model in Section 2, and sum
up the presentation plan in Section 3.

While intermodal traffic makes use of the same tracks and in certain cases the same
equipment (e.g.,locomotives) as trains moving other types of cargo, it entails important
differences. The most obvious one is that intermodal demand is expressed in numbers
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of containers, while it is tonnage translated into numbers of railcars of particular types
in the other case. About 90% of the containers used worldwide are either 20 or 40 feet,
while longer units (45, 48 and 53 feet) are also used in the North American market
(Wikipedia, 2016). This give rise to a demand structure where shares of the different
types of containers to transport vary over origin-destination (OD) pairs. In terms of
equipment, intermodal railcars are different from other railcars. Cars with one to five
platforms are used in North America and they can often be double-stacked. The railcars
have different loading capabilities depending on the number of platforms, their length and
weight holding capacity. A railcar with five 40-foot platforms can, for example, transport
a maximum of ten 40-foot containers or five 40-foot and three 53-foot containers. The
multitude of railcar and container types results in a large number of ways to load contain-
ers that must respect different loading rules (Mantovani et al., 2016). Representing in a
computationally efficient way the assignment of containers to railcars within a tactical
blocking model is a particular challenge of the problem we address. A second challenge
is to account for the utilization of available railcars, which are generally in short supply.

A block is a group of railcars, with possibly different origins and destinations, that
move as a single unit between a pair of yards, without cars being handled individually
(e.g., sorted) at intermediate yards. Blocking thus aims to take advantage of economies
of scale and reduce the cost of handling railcars at yards. A block is moved by a sequence
of trains, while a railcar can be moved by one or a sequence of blocks between its origin
and destination yards. The classical train blocking problem then consists in selecting the
blocks to build and assigning railcars with given OD pairs to blocks. Several studies
in the literature focus on the train blocking problem (e.g., Bodin et al., 1980; Newton
et al., 1998; Barnhart et al., 2000), while Zhu et al. (2014) integrates blocking within a
comprehensive scheduled service network design model, but none of these studies accounts
for the container-to-railcar assignment or the management of the railcar fleets (see Crainic
et al., 2014, for a general model of the latter issue).

As detailed next, we propose a model that considers several types of containers and
railcars, integrates the contaier-to-railcar assignment, and accounts for the utilization of
the railcar fleets. The train schedule is given in the problem setting we consider.

2 Problem Description and Modeling

We focus on the problem of blocking intermodal traffic. In this case, the demand (or
shipments) corresponds to containers, which are characterized by their type, origin-
destination pair, arrival time at origin and required time at the destination. The railroad
uses a fleet of intermodal railcars to move the demand. The fleet can be composed of vari-
ous types of railcars designed to move containers with different characteristics. There is a
large variety of railcars on the North American market (Association American Railroads,
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2014). Each railcar has a number of platforms and slots on the platforms. Double-stack
platforms have two slots while single-stack platforms have one. The matching of contain-
ers to slots given the railcar type is an important issue since all slots may not be usable
when the container type matches the railcar type poorly. For example, 40-foot platforms
cannot take 53-foot containers in the bottom slot. The container types should therefore
be defined based on the attributes that influence the loading capabilities of the railcars,
e.g., size, cargo type (dry, refrigerated) or weight (heavy or light). We are therefore
faced with three consolidation processes, assignment of containers to railcars, of railcars
to blocks and of blocks to trains, where the differentiation of railcar and container types
is a paramount consideration.

Figure 1: Time-Space Network Representation

We propose a model that is based on a cyclic four-layer space-time network repre-
sentation, illustrated in Figure 1. This is a tactical problem and the schedule is defined
over given schedule length (e.g., a week) and is assumed to be repeated over a planning
horizon. Since intermodal traffic shares the network with trains moving other types of
cargo, we take the train schedule as given. Different from most studies in the literature
(e.g., Zhu et al., 2014), this allows us to use a continuous-time network representation.
Moreover, we do not have any decision variables related to the train (top) layer. For each
scheduled intermodal train, the arrival and departure times at each terminal are known
and yield the T-IN and (T-OUT nodes, respectively. We model two train activities with
different types of arcs: waiting arcs that represent the time a train spends in a terminal
(T-IN to T-OUT) and moving arcs between terminals (T-OUT to T-IN). A path in the
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train layer corresponds to a train service. Features such as power and maximum length
of the train are assumed to be known and give the capacity of the moving arcs.

The block layer is illustrated below the train layer. We generate the nodes and arcs in
the block layer based on the nodes in the train layer, and a block with a particular (time-
dependent) OD pair is represented by a path in the block layer. We model three activities:
building new blocks, transferring blocks from one train to another, and dismantling blocks
at their destinations. These activities are represented by three sets of nodes (B-IN, B-2T
and B-OUT) and arcs. The Blocks Build arcs (B-O to B-2T) are the only in-layer arcs,
but there are three types of inter-layer arcs between the block and train layers: Blocks
Attach (attaching a block to a train), Blocks to Dismantle (blocks that have arrived at
their destination are disconnected from the train) and Blocks to Transfer Delay (blocks
are disconnected from a train and wait in the terminal for their next train).

The car layer (situated between the container and block layers) is used to model the
activities of assigning containers to railcars and railcars to blocks. The fleet of available
empty railcars is represented by a source node at the beginning of the time horizon at each
terminal (C-IP). There are also nodes representing the start time of container-to-railcar
assignment (C-EP) and the start time of the container unloading activities (C-UN).
Several important types of constraints are associated with the C-EP nodes because this
is where the matching of demand (different types of containers that should be loaded,
represented by an inter-layer arc) and empty railcars take place. The empty railcars
can come from the pool (C-IP), empty railcars waiting from a previous time period,
from railcars that have been unloaded or as railcars that arrived empty (repositioning
represented by an inter-layer arc). The demand is represented in the container layer
where the continuous arrival of containers is accumulated over time intervals (e.g.. daily).
A sink node called D-OUT accumulates all the containers arrived at the destination and
is connected to C-UN by inter-layer arcs.

We propose a mixed integer linear programming (MILP) formulation with four groups
of decision variables: (i) Block selection, a binary variable equal to 1 if a block is selected
or 0 otherwise; (ii) Container flow distribution representing the number of different types
of containers on a given arc in the container layer; (iii) Loaded railcar flow distribution
representing the number of loaded railcars of a certain type transporting a number of
containers of a given type (demand) on a given arc; (iv) Empty railcar flow distribution
representing the number of empty railcars of a given type on a given arc. The objective
minimizes the total cost of the system over the planning horizon. It encompasses the
cost of selecting, operating and transferring blocks as well as the penalty for late arrival
of demand and the cost of utilizing resources. There are flow conservation constraints in
the four layers, linking constraints, assignment constraints and yard capacity constraints.
The latter are defined as bundle constraints regarding the maximum length of blocks that
can be built and dismantled during a given time interval at a given terminal.
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3 Conclusion

We address the blocking problem of intermodal trains in the North American market.
The problem is complex dues to the many different railcar and container types, which re-
quire to model the container-to-railcar assignment and the utilization of multiple types of
resources. This makes the problem different and more complicated than the train block-
ing problems considered in the literature. We propose a MILP formulation based on a
continuous-time, multi-layer network. We take advantage of the problem characteristics,
e.g., the known train schedule, to build a solution method that considerably reduces the
number of feasible blocks and may thus use a commercial solver. We will present and
discuss the model, solution method and numerical results for realistic instances.
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1 Introduction

This paper deals with the problem of producing optimized visualizations of railway rolling
stock rotations. The problem arises during the task of assigning railway rolling stock vehicles
to timetabled passenger trips of a cyclic timetable at our industrial partner DB Fernverkehr
AG (DBF). DBF is one of the largest passenger railway operators in Europe. So what
are rotations that should be visualized? Imagine a timetable that is defined for one week,
i.e., there are planned passenger trips for each day from Monday to Sunday. We call this
timetable the standard week. The standard week is usually repeated for several weeks or
month. To operate the trips during that period the trips have to be assigned to a physical
vehicle that operates it. This defines an optimization problem and its outcome is a cyclic
sequence of trips for each vehicle. This cyclic sequence is called rotation. Remark, the
rotation could pass the standard week v ∈ Z+, v > 1 times without operating a trip twice.
In that case n physical vehicles are required to operate the rotation. In reality, it turns
out that it is just not enough to compute a solution. We also have to think about how to
make it easy to manage. In simple words, we ask how to print a rolling stock rotation on
a physical paper? The reason for that it that the rotations could be easily communicated
and checked for desired properties with that. There is a fixed format how to visualize
rotations at DBF in order to obtain a clear picture of repeated trips. But, there are many
different possibilities to visualize the same rotations. This defines the optimization problem
which is topic of this paper. We introduce the handout visualization problem for rolling
stock rotations and developed an optimization approach, i.e., an IP formulation. Moreover,
we design a assignment-based construction heuristic, which turns out to be very fast and
powerful compared to lower bounds of the IP formulation. A good visualization of a rolling
stock rotation was one of the keys to bring optimized rolling stock rotations into operation
because it directly increases user acceptance.

2 Rolling Stock Rotation Handouts

The methodology of rolling stock rotation visualizations in terms of the standard week is
standardized across many railway companies. For example, NS Reizigers, the Österreichische
Bundesbahn, Trenitalia, and, Deutsche Bahn are using the visualization concept that we call
handout concept.

2.1 Handout Segments
By construction, each rolling stock rotation runs an integral number of times through the
set of operational days D until it reaches again its first trip. We denote this number by
v ∈ Z+ for the rolling stock rotation that we want to visualize. The number of rolling stock



2 Optimization of Handouts for Rolling Stock Rotations Visualization

Ω(s) D(s) s ∈ S Ω(next(s))

1 Mon 374 1061 2

1 Tue 373 376 2

1 Wed 374 1061 2

1 Thu 373 376 2

1 Fri 374 1061 2

1 Sat 373 376 2

1 Sun 374 1061 2

2 Mon 277 994 1

2 Tue 374 1061 1

2 Wed 373 376 1

2 Thu 374 1061 1

2 Fri 373 376 1

2 Sat 374 1061 1

2 Sun 373 376 1

Ω(s) D(s) s ∈ S Ω(next(s))

1 Mon 374 1061 1

1 Tue 374 1061 1

1 Wed 374 1061 1

1 Thu 374 1061 1

1 Fri 374 1061 1

1 Sat 374 1061 1

1 Sun 374 1061 2

2 Mon 277 994 2

2 Tue 373 376 2

2 Wed 373 376 2

2 Thu 373 376 2

2 Fri 373 376 2

2 Sat 373 376 2

2 Sun 373 376 1

Figure 1 Two different handouts for the same rolling stock rotation.

vehicles needed to operate the rotation is also equal to v, i.e., v rolling stock vehicles run
through the rotation one by one.

For the visualization, we imagine a rolling stock rotation as a cycle that runs through
timetabled trips of a standard week, i.e., |D| = 7. In order to find a convenient visualization,
the rotation is split into |D| ·v segments. A segment represents the operation of the rotation
on a single day of operation. A segment may be empty, i.e., does not contain any timetabled
trip at all. Note that the assumption |D| = 7 is motivated by the fact that we consider the
standard week. Nevertheless, all considerations in this paper also apply to other non-trivial
planning horizons. Let S be the set of segments of the rolling stock rotation to be visualized
and let D(s) ∈ {Mon, . . . ,Sun} =: D denote the day of operation of the segment s ∈ S and
the set of days of operation, respectively. In addition, we denote by [v] := {k ∈ N | k ≤ v}
the set of the first v natural numbers. A handout is a function Ω : S 7→ [v] such that

D(s) = D(t) ⇒ Ω(s) 6= Ω(t) ∀s, t ∈ S.

That is, Ω assigns different values of [v] to each pair of segments that are both associated
with the same day of operation. By definition, always exactly v segments of a rolling stock
rotation are associated with the same day of operation. Thus, if a handout Ω is at hand each
segment s ∈ S can be precisely identified by Ω(s) and D(s). This is an evident motivation
for the concept of handouts. For most of the rolling stock rotations in industry v is much
greater than one. Indeed, rolling stock rotations with v > 40 are not an exception at DBF.
For those rotations a handout obviously provides a significant gain: Segments can now be
precisely distinguished during all further planning steps. The major objective of a handout
Ω is to create the standardized visualization for rolling stock rotations that we mentioned
above. Indeed,Ω completely defines this visualization. The visualization appears by printing
all segments one below the other such that they are lexicographically ordered according to
Ω and the day of operation. Figure 1 provides two different visualizations (i.e., the two
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tables) derived from two different handout functions for the rolling stock rotation. In both
tables the first three columns state the value Ω(s) for a segment s ∈ S associated with D(s).
The underlying rolling stock rotation is not modified by those visualizations. Therefore, the
successor relations of the segments that are defined by the rolling stock rotation remain.
Segment next(s) ∈ S denotes the direct successor of s ∈ S in the rotation. This order of
precedence is stated in the last columns of the two tables. Thus, the rolling stock rotation
that is visualized by a handout Ω can be directly followed in the tables. For example, for the
direct successor t ∈ S of the segment s ∈ S (i.e., next(s) = t) with Ω(s) = 2 and D(s) = Sun
on the left of Figure 1 we know that Ω(next(s)) = Ω(t) = 1 and that D(t) = Mon from the
visualization. In this way, the successor segment t can be easily identified and we are able
to double-check that both handouts in Figure 1 visualize the rolling stock rotation.

2.2 Handout Quality
The handout function Ω is extensively distributed as a planning tool in the railway industry.
In particular, the manual planning of rolling stock rotations is based on similar functions.
There, timetabled trips of a planned rotation are equipped with values of [v]. This is
comprehensive because such functions can be made visible (as we have seen for segments)
and determine a large part of the rolling stock rotations as well.

Thus, it is not surprising that the function Ω has some expectations in the railway
industry. For example, for all segments s ∈ S arranged in the left of Figure 1

Ω(next(s)) = (Ω(s) mod v) + 1 (1)

holds. If a successor relation follows equation (1) we call it logical turn. It is desired to
have as much logical turns as possible in a handout in order to obtain a visualization in that
the rolling stock rotations can be easily followed. Imagine that the segments are printed on
paper in the order given Ω. In case of a logical turn preceding and succeeding segments are
printed next to each other. It is notable that it is not always possible to find a handout such
that all successor relations are logical turns. By definition, Ω induces a natural partition
of the segments of the rotation into blocks. All segments s ∈ B of a block B ⊆ S have the
same Ω(s), but a different day of operation. Therefore, each block is of cardinality |D| and
there are always exactly v blocks induced by a handout. On the left hand side of Figure 1
the first seven segments B ⊂ S with Ω(s) = 1 for all s ∈ B form a block.

Another desired property (if not the most important) is related to the blocks of a handout.
For example, on the right hand side of Figure 1 the first seven segments, (i.e., the segments
of the first block) are all equal. We say that two segments u, v ∈ S with Ω(s) = Ω(t) have
a difference if they cover trips with different train numbers. A handout is desired to have
as few differences in its blocks as possible such that patterns can be easily remembered if
they are arranged appropriately in blocks. For example, the connection of trips with train
number 374 to trips with train number 1061 is reflected in the handout on the right of
Figure 1. Note that a handout can only contain fewer differences if appropriate patterns
along the rotation exist. This important aspect in rolling stock rotation planning is called
regularity, see [2] and [3].

2.3 Handout Optimization Problem
Finding Ω is an optimization problem because many handouts of different quality w.r.t.
logical turns and differences exist for a given rolling stock rotation. We call this problem
handout optimization problem (HOP). In order to have a formal reference for this problem,



4 Optimization of Handouts for Rolling Stock Rotations Visualization

we formulate it as a quadratic assignment problem in this section. To this end, let xω
s ∈ {0, 1}

be a binary decision variable that takes value one if and only if Ω(s) = ω for the segment
s ∈ S. In order to qualify handouts we denote by diff(s, t) ∈ Z+ the number of different
train numbers in s ∈ S and t ∈ S with s 6= t. A straight-forward formulation of the HOP as
a special quadratic assignment problem (HOPQAP) reads as follows:

min
∑

ω∈[v]

 ∑
s,t∈S
s6=t

diff(s, t)xω
s x

ω
t − α

∑
s∈S

xω
s x

next(ω)
next(s)

 (HOPQAP)

∑
ω∈[v]

xω
s = 1 ∀ s ∈ S, (2)

∑
s∈S(d)

xω
s = 1 ∀ d ∈ D, ω ∈ [v], (3)

xω
s ∈ {0, 1} ∀ s ∈ S, ω ∈ [v].

Equalities (2) and (3) of program (HOPQAP) constrain the binary x-variables to perfectly
match all segments of S to pairs of D× [v], i.e., to form a perfect matching (i.e., an assign-
ment) in a bipartite graph that is composed of the two disjoint node parts S and D × [v].
Thus, any feasible solution to program (HOPQAP) precisely defines a handout Ω where
Ω(s) = ω if and only if xω

s = 1. By the objective function of program (HOPQAP) we model
both the minimization of differences as well as the maximization of logical turns. To this
end, quadratic terms are used. Note that these two desired properties compete with each
other. A handout that minimizes differences may not maximize the number of logic turns
and vice versa, see Figure 1. In order to adjust the relationship between logical turns and
differences to a desired level, the parameter α ∈ Q is introduced.

I Theorem 1. The handout optimization problem is NP-hard even for α = 0.

Proof. This can be proven by a reduction of the the 3-partition problem, which is well
known to be NP-hard see [1], to the HOP. J

3 Handout Optimization

To solve the handout optimization problem we implemented two solution approaches:
Mixed Integer Programming approach: The model (HOPQAP) is linearized to a
mixed integer programming formulation and solved with a standard MIP solver.
Heuristic approach: We implemented a construction heuristic. The procedure is
subdivided into two stages. In the first stage, the segments are partitioned into blocks
but without assigning a value for Ω to them. In one iteration an assignment problem is
set up and solved with an O(|V |3) implementation of the classical Hungarian method,
see [4]. In the second stage a value of [v] is assigned to each of these blocks. Consequently,
the segments take over the values assigned to each block in that they are contained. The
sum of differences of the segments within the blocks is minimized in the first stage, while
the number of logical turns is maximized in the second stage.

4 Computational Results

In this section we present computational results for the optimization of handouts. The
considered HOP instances are based on optimized rolling stock rotations provided by DBF.
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Table 1 Computational results for handout optimization problems.

v columns rows δ1 δ3 t1 t2 t3 c1 c2 c3

6 4578 1536 0 0 5.61 0.71 4.98 220 221 220
10 21070 4080 1 1 228.52 0.49 447.97 375 377 375
15 70980 8970 11 9 3600.01 0.55 3600.01 368 372 367
18 122598 12816 7 7 3600.02 0.42 3600.06 952 959 951
25 328300 24450 44 9 3600.12 1.25 3600.16 3233 1998 1990
29 512372 32770 ∞ 7 3600.00 0.49 3600.00 - 1470 1468
31 625828 37386 46 9 3600.08 0.99 3600.07 3371 2006 1991

They differ in characteristics as number of trips, fleet sizes to cover the trips, or possible
connections of trips. All computations were performed on CPU with 3.50GHz, 16GB of
RAM in multi thread mode with four cores using Gurobi 6.0 with a runtime limit of one
hour (3600 seconds). We consider the following three solution approaches to the HOP:
1. static solving of the linearised MIP formulation (HOPQAP) with Gurobi 6.0,
2. the construction heuristic,
3. a MIP approach using the solution of approach 2 as warmstart.

Table 1 provides the results of these three solution approaches for our test set. The
number of vehicles v range from 2 to 31, see the first column of Table 1. As a consequence,
we have to solve different models of HOPMIP. The corresponding number of columns and
rows of the MIP are given in columns two and three. Columns δ1 and δ3 provide the final
relative gap for approach 1 and 3, respectively. Note that we explicitly refuse to include
δ2 because without approach 1 it would not be possible to provide a quality measure for
approach 2. The last six columns show the computation time ti and the final cost value
ci for all three approaches i ∈ {1, 2, 3}. In all cases the heuristic finds solutions within at
most two seconds, see column t2. The MIP approach allows us to benchmark the heuristic
solutions, see the values in columns, c1 to c3. This impressively demonstrates the high
quality of the solutions provided by approach 2. For the complete set of instances one could
observe that approach 3 improves the solution quality after one hour of at most 1%. Thus,
we conclude that approach 2 is a very powerful heuristic to solve real world instances of the
HOP.
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Abstract

This paper focuses on the development of new algorithms for the real-time train scheduling and
routing problem in a complex and busy railway network. Since this is a strongly NP-hard problem
and practical size instances are complex, simple heuristics are typically adopted in practice to compute
feasible but low quality schedules in a short computation time. In order to compute good quality
solutions, we consider a mixed-integer linear programming formulation of the problem and solve it with
a commercial solver. However, the resolution of this formulation by a commercial solver often takes a
too long computation time. Therefore, a new methodology based on the relaxation of some train routing
constraints in the formulation is proposed for the quick computation of a good quality lower bound.
The lower bound solution is then transformed via a constructive metaheuristic into a feasible schedule,
representing a good quality upper bound to the problem. Computational experiments are performed on
several disturbed traffic situations for two practical case studies from the Dutch and British railways.
The results show that the new lower and upper bounds are computed in a few seconds and are often
of similar quality to the ones computed by the commercial solver in hours of computation.

Keywords: Real-Time Railway Traffic Management; Disjunctive Programming; Metaheuristics.

1 Introduction

This work addresses the Real-Time Train Scheduling and Routing Problem (RTTSRP), i.e., the problem
of computing in real time a conflict-free schedule for a set of trains circulating in a network within a time
window W = [t, t + δ], given the position of the trains at time t and the status of the network in W . The
objective function is the minimization of train delays. A schedule is conflict-free if it satisfies the railway
traffic regulations, which prescribe a minimum separation between consecutive trains on a shared resource
in order to ensure the safety of train movements and to avoid deadlock situations in the network.

The study of real-time train scheduling and routing problems received increasing attention in the liter-
ature in the last years. Early approaches tend to solve very simplified problems that ignore the constraints
of railway signalling, and that are only applicable for specific traffic situations or network configurations
(e.g., a single line or a single junction), see, e.g., the literature reviews in [1, 2, 4, 7, 8, 9, 11]. Among
the reasons for this gap between early theoretical works and practical needs are the inherent complexity of
the real-time process and the strict time limits for taking and implementing decisions, which leave small
margins to a computerized Decision Support System (DSS).

The alternative graph of Mascis and Pacciarelli [10] is among the few models in the literature that
incorporate, within an optimization framework, the microscopic level of detail that is necessary to ensure
the fulfillment of traffic regulations. This model generalizes the job shop scheduling model in order to
deal with additional constraints. Each operation denotes the traversal of a resource (block/track section or
station platform) by a job (train route).

1



A big-M Mixed Linear Integer Programming (MILP) formulation of the RTTSRP can be obtained from
the alternative graph model by introducing a binary variable for each train ordering decision and a binary
variable for each routing decision [12]. The resulting problem is strongly NP-hard [10].

This paper reports on recent improvements implemented in the AGLIBRARY optimization solver [3, 5,
6, 12]. The solver includes a branch and bound algorithm for scheduling trains with fixed routes [5], plus
a local search [6], a tabu search [3], and a variable neighborhood search [12] for re-routing trains.

Previous research left open two relevant issues. The first issue is how to certify the quality of the
RTTSRP solutions in a short computation time by means of effective lower bounds. This issue is made
difficult due to the poor quality of the lower bounds computed by MILP solvers, that are usually based
on a linear relaxation of the big-M MILP formulation of the RTTSRP. The second issue concerns with
the computation of effective upper bounds through the development of new solution methods. Both issues
motivate this paper, whose contribution consists of the following algorithms.

A first algorithm is proposed for the computation of a lower bound for the RTTSRP. This is obtained
by the construction of a particular alternative graph for a relaxed RTTSRP in which each train route
is composed by two types of components: (i) real operations that are in common with all alternative
routes of the associated train; (ii) fictitious operations that represent the shortest path between two real
operations that can be linked by different routing alternatives for the associated train. For the latter type
of component, no train ordering decision is modeled, disregarding the potential conflicts between trains.
The resulting alternative graph is then solved to optimality by the branch and bound algorithm in [5].

A second algorithm is a constructive metaheuristic proposed in order to optimize the selection of default
routes. This metaheuristic starts from the optimal solution obtained for the alternative graph of the relaxed
RTTSRP problem and iteratively replaces the fictitious operations of each train with a particular routing
alternative. The selection of the routing alternative is based on the evaluation of the insertion of various
train routes via the construction of the corresponding alternative graph and the computation of train
scheduling solutions via fast heuristics.

Computational experiments are performed on practical-size instances from the Dutch and British rail-
ways. The new algorithms often compute good quality lower and upper bounds to the optimal RTTSRP
solutions in a shorter computation time compared to a commercial MILP solver.

2 Problem formulation

This section describes our formulation of the RTTSRP. The RTTSRP can be divided into two sub-problems:
(i) the selection of a route for each train, and (ii) the train scheduling decisions once the routes have been
fixed. We first provide a brief description of the alternative graph model for sub-problem (ii). We then
present a big-M MILP formulation for the overall scheduling and routing problem.

2.1 Alternative graph model

The alternative graph (AG) model for sub-problem (ii) of the RTTSRP is a digraph G = (N, F, A) where
N = {0, 1, ..., n− 1, n} is a set of nodes, F is a set of fixed arcs, and A a set of pairs of alternative arcs.

Each node, except the start 0 and end n nodes, is associated with the start of an operation krj, where
k indicates the train, r the route chosen and j the resource it traverses. The start time tkrj of operation
krj is the entrance time of train k with route r in resource j.

The fixed arcs are used to model running, dwell, connection, arrival, departure, and pass through times
of trains. Let the resources p and j be two consecutive resources processed by train k with route r, the fixed
arc (krp, krj) ∈ F models a job constraint between the nodes krp and krj. The weight wF

krp krj represents
a minimum time constraint between tkrp and tkrj: tkrj ≥ tkrp + wF

krp krj. A fixed arc (umv, krz) ∈ F
enforces a connection constraint between train k with route r and train u with route m.

The alternative arcs are used to model the headway times between two consecutive trains. Each pair
of alternative arcs ((krj, ump), (umi, krp)) ∈ A models train sequencing decisions between train k with
route r and train u with route m on the common resource p. Note that j [respectively i] is the next
resource processed by train k [u] when using route r [m]. The two arcs of the pair have associated the
weights wA

krj ump and wA
umi krp. In any solution, only one arc of each pair can be selected. If alternative
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arc (krj, ump) [(umi, krp)] is selected in a solution, the constraint tump ≥ tkrj + wA
krj ump [tkrp ≥ tumi +

wA
umi krp] has to be satisfied. This is to fixing the order of trains, first k and then u [first u and then k].

A solution for sub-problem (ii) of the RTTSRP is represented by the following graph structure. Selection
S is a set of alternative arcs obtained by selecting exactly one arc from each alternative pair in A and such
that the resulting graph G(F, S) = (N, F ∪ S) does not contain positive weight cycles. The graph selection
allows to associate feasible train orders and times to all operations. The objective function is measured as
a makespan minimization. Given S and any two nodes krp and uml, we let lS (krp, uml) be the weight of
the longest path from krp to uml in G(F, S). The start time tkrp of krp ∈ N is the quantity lS(0, krp),
which implies t0 = 0 and tn = lS(0, n).

2.2 MILP formulation

A MILP formulation for sub-problem (ii) of the RTTSRP can be obtained from the alternative graph model
by representing each fixed arc in F as a linear constraint, by translating each alternative pair in A into
a pair of linear constraints, and by introducing a binary variable to model the choice between one of the
paired constraints. The variables of sub-problem (ii) are the following: |N | real variables tkrj associated to
the start time of each operation krj ∈ N , and |A| binary variables x(krj,ump),(umi,krp) associated to each
alternative pair ((krj, ump), (umi, krp)) ∈ A.

We next extend the MILP formulation for sub-problem (ii) to the overall RTTSRP formulation. The
constraint sets F and A are enlarged in order to contain all possible train routing combinations. |C| new
binary variables y are associated to the set of routes of the considered train, in addition to the |N | + |A|
variables of sub-problem (ii).

The RTTSRP is formulated as the disjunctive program (1) with the following notation. M is a sufficiently
large number, e.g. the sum of all arc weights. Z is the number of trains, Rb the number of routes for each
train b = 1, ..., Z. For each train b, only one among the Rb routes can be chosen in any RTTSRP solution.
The binary variable yab indicates if route a is chosen (1) or not (0) for train b. The following constraint
holds for train b:

∑Rb

a=1 yab = 1.
When a route r is chosen for train k (i.e. ykr = 1), each fixed constraint in F related to route r and

train k must be satisfied. For each fixed arc (krp, krj) ∈ F , tkrj − tkrp ≥ wF
krp krj must hold. A fixed arc

(umv, krz) ∈ F enforces a connection constraint between train k with route r and train u with route m (if
yum = ykr = 1).

min tn∑Rb

a=1 yab = 1 b = 1, ..., Z

tkrj − tkrp ≥ wF
krp krj + M (1 − ykr) (krp, krj) ∈ F

tkrz − tumv ≥ wF
umv krz + M (2 − ykr − yum) (umv, krz) ∈ F

tump − tkrj ≥ wA
krj ump + M (2 − ykr − yum + x(krj,ump),(umi,krp)) ((krj, ump), (umi, krp)) ∈ A

tkrp − tumi ≥ wA
umi krp + M (3 − ykr − yum − x(krj,ump),(umi,krp)) ((krj, ump), (umi, krp)) ∈ A

yab ∈ {0, 1}
x(krj,ump),(umi,krp) ∈ {0, 1}

(1)

Regarding the alternative constraints in A, if yum = ykr = 1 and the routes m and r of trains u and k
use the same resource p of the network, a potential conflict exists on that resource and an ordering decision
has to be taken. This is modelled by introducing the binary variable x(krj,ump),(umi,krp) for the alternative
pair ((krj, ump), (umi, krp)) ∈ A, related to trains u and k travelling on resource p. There are two possible
scheduling decisions for each alternative pair ((krj, ump), (umi, krp)) ∈ A: if x(krj,ump),(umi,krp) = 0
then tump − tkrj ≥ wA

krj ump must be satisfied (i.e. (krj, ump) ∈ S); if x(krj,ump),(umi,krp) = 1 then
tkrp − tumi ≥ wA

umi krp must be satisfied (i.e. (umi, krp) ∈ S).
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3 The lower bound algorithm

We propose a new method for the computation of a good quality lower bound for the RTTSRP. The basic
idea is to reduce the sub-problem (i) to a single route for each train, and solve the resulting sub-problem
(ii) to optimality.

Solving the sub-problem (i) requires the construction of the alternative graph G′ = (N ′, F ′, A′) as follows.
The set N ′ contains node 0, node n and the nodes of all jobs. For each train, the corresponding job (train
route) starts from node 0 and ends in node n. The intermediate nodes are either real or fictitious operations.
We recall that a real operation for a train is an operation in common with all its alternative routes, i.e.
an operation to be performed by the train in any solution of sub-problem (i). A fictitious operation is the
shortest path between two real operations that can be linked by different routing alternatives.

F ′ is the set of fixed arcs in G′. In general, the weight wF ′

krp krj of each arc (krp, krj) ∈ F ′ corresponds
to the less stringent constraint between nodes krp and krj when looking at all routing alternatives of k.
In particular, if krp is a fictitious operation and krj is a real operation, the weight wF ′

krp krj is equal to the
minimum travel time between the start of krp and the start of krj, taken from the shortest path among
the routing alternatives of k. The weight wF ′

umv krz corresponds to the less stringent connection constraint
between the nodes umv and krz when looking at all routing alternatives of u and k.

A′ is the set of alternative pairs in G′. In each pair ((krj, ump), (umi, krp)) ∈ A′, ump and krp are
necessarily real operations, since the lower bound method only takes scheduling decisions between conflicting
resources in all train routing combinations. In other words, if a potential conflict can be avoided by some
routing combinations, this conflict is disregarded in the lower bound method.

Sub-problem (ii) requires the computation of the optimal graph selection S∗ for G′. This corresponds to
solving the following disjunctive program (2). The lower bound value is the optimal solution of sub-problem
(ii). In this paper, we solve sub-problem (ii) via the branch and bound algorithm in [5], truncated at a given
time limit of computation. In case the optimal solution cannot be found, the algorithm always returns a
valid lower bound value.

min tn
tkrj − tkrp ≥ wF ′

krp krj (krp, krj) ∈ F ′

tkrz − tumv ≥ wF ′

umv krz (umv, krz) ∈ F ′

tump − tkrj ≥ wA′

krj ump + Mx(krj,ump),(umi,krp) ((krj, ump), (umi, krp)) ∈ A′

(tkrp − tumi ≥ wA′

umi krp + M (1 − x(krj,ump),(umi,krp)) ((krj, ump), (umi, krp)) ∈ A′

x(krj,ump),(umi,krp) ∈ {0, 1}

(2)

4 The upper bound algorithm

We propose a constructive metaheuristic for the computation of a good quality upper bound for the
RTTSRP. This metaheuristic starts from the alternative graph G′ and a selection S generated by the
lower bound method, and iteratively trasforms each job (train route) with some fictitious operations into a
new job with real operations only. At each iteration, the train to be trasformed is chosen from a train list,
according to a sort criteria defined in advance (in this paper we order the trains on a first come first served
basis). The selection of a real route for the train is based on a local search procedure in which we evalute
the insertion in G′ of all its potential real routes by an alternative graph greedy heuristic. After the local
search, the real route generating less consecutive delays is inserted in G′, and the chosen alternative graph
heuristic updates the selection S of G′. When all trains with some fictitious operations have been processed,
the train list is empty and the iterative process ends. The metaheuristic returns lS(0, n) obtained in G′ at
the last iteration, that corresponds to a solution to the RTTSRP.
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5 Computational experiments

This section presents the experimental results on the two practical case studies: a British test case, part of
the East Coast Main Line of The United Kingdom; and a Dutch test case, the Utrecht - Den Bosch railway
network. Both the test cases are modelled with a microscopic level of detail, which means that switches,
signals, block sections, and track segments in complex station areas are included (yielding several hundreds
of resources). Also, train movements are described with a precision of seconds.

For each case study, we consider a set of 15 RTTSRP instances, varying the initial delays of trains.
The experiments are executed on a workstation Power Mac with processor Intel Xeon E5 quad-core (3.7
GHz), 12 GB of RAM. We compare the lower and upper bounds obtained of Sections 3 and 4 implemented
in AGLIBRARY, and the MILP formulation of Section 2.2 solved by IBM LOG CPLEX MIP 12.0. In
the lower bound method, we use the Branch and Bound (BB) algorithm of [5] truncated at 1 hour of
computation. However, for all the tested instances the time limit of BB is never reached. The CPLEX
solver is truncated at 2 hours of computation. The CPLEX time limit is reached for 16/30 instances.

Table 1 presents average information on the 15 RTTSRP instances of each test case. This network
presents a huge number of |A| variables, since these are defined for each pair of trains sharing a resource
in one hour traffic prediction horizon and for all train routing combinations. For the British test case we
only consider two routes per train, and thus less |A| and |C| variables compared to the Dutch case study.

Table 1: Characteristics of the instances
Case Network Num Num Routes Num Resources MILP Variables
Study Length (km) Trains Per Train Per Train |N | |A| |C|
Dutch 50 40 9 31 1615 1092557 356

British 80 90 2 69 5565 46219 128

Table 2 reports the average results for the 15 RTTSRP instances of each test case, in terms of Lower
Bound (LB) and Upper Bound (UB) values (in seconds) obtained by the two tested solvers, and the time
(in seconds) required to compute those values.

Table 2: Average computational results
Case Solver LB UB
Study Value Comp. Time Value Comp. Time

Dutch AGLIBRARY 94.1 0.1 179.4 11.5
Dutch CPLEX 58.7 244.9 1259.9 5399.6

British AGLIBRARY 1023.9 4.0 1472.1 7.8
British CPLEX 1013.3 469.9 1062.8 872.5

The results on the Dutch case study show that AGLIBRARY, on average, outperforms CPLEX both
in terms of LB quality, UB quality and the related computation times.

Regarding the results of the British case study, the LB quality of AGLIBRARY is, on average, superior
to the one of CPLEX, while the constructive metaheuristic is not always able to compute an UB value close
to the one obtained by the other solver. However, AGLIBRARY always requires a few seconds to compute
the LB and UB values, while CPLEX requires several minutes of computation and is thus not applicable
to recover real-time traffic disturbances.

6 Conclusions and future research

This paper introduces new methods for the computation of good quality LB and UB for the RTTSRP. The
LB value is computed by relaxing some constraints in the MILP formulation of the RTTSRP and solving
the relaxed formulation via the BB algorithm of [5]. The UB value is obtained by transforming the LB
solution in a RTTSRP solution via greedy heuristics. The computational results are promising, since both
the new LB and UB values are computed very quickly and are often of good quality compared to the LB
and UB values computed with CPLEX in hours of computation.

Further research should be dedicated to incorporating the new LB and UB methods in advanced heuris-
tic, metaheuristic and exact algorithms for the RTTSRP.
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Multi-Criteria Decision Making when Planning & Designing Sustainable Multi-modal 

Transportation in a Corridor 
Marie P. Louis and Eric J. Gonzales 

Public transit is often promoted as a way to reduce congestion and transportation-related emissions 

in cities. To design transit service for a multimodal corridor in which people may also driver cars, 

there are three objectives to consider: minimize generalized cost to users (including direct costs to 

users and travel time), minimize agency cost for infrastructure and operations, and minimize 

emissions of pollutants such as greenhouse gas emissions. Analytical models of these three types 

of costs have been developed to compare private cars, buses operating in mixed traffic, buses in 

dedicated lanes, light rail in mixed traffic (i.e., tram), light rail in dedicated right-of-way, and 

grade-separated metro. A Pareto analysis is conducted to reveal the trade-off between cost and 

emissions when optimizing the stop spacing and service headway for the deployment of each mode 

to serve demand characterized by density of trip-generation, average trip length, and average value 

of time. The models have a general structure that allows for comparison across many transit modes, 

and the results allow for systematic evaluation of the sustainability of multimodal corridors under 

different demand conditions. This study plugs a research gap by directly targeting the effect that 

greenhouse gas emissions have on the design of transit service. Although emission costs do not 

have a big effect on the optimal design of transit service for a specific mode, it can have important 

consequences for mode selection and planning incentives for travelers to use transit. These models 

also provide estimates of total emissions in the corridor. 



Bin-packing problems with load balancing and

stability constraints

Alessio Trivella*, David Pisinger
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1 Introduction

The Bin-Packing Problem (BPP) is one of the most investigated and applicable combi-

natorial optimization problems. The problem consists of packing objects of different sizes

into a finite number of similar bins, such that the number of used bins is minimized.

Applications of the bin-packing problem apper in a wide range of disciplines, including

transportation and logistics, computer science, engineering, economics and manufacturing.

The problem is well-known to be NP-hard and difficult to solve in practice, especially

when dealing with the multi-dimensional cases.

Closely connected to the BPP is the Container Loading Problem (CLP), which addresses

the optimization of a spacial arrangement of cargo inside a container or transportation

vehicle, with the objective to maximize the value of the cargo loaded or the volume uti-

lization. The CLP focuses on a single container, and has been extended in the literature

to handle a variety of different constraints arising from real-world problems. Consider for

example the problem of arranging items into an aircraft cargo area such that the barycen-

ter of the loaded plane is as close as possible to an ideal point given by the aircraft’s

specifications. The position of the barycenter has an impact on the flight performance in

terms of safety and efficiency, and even a minor displacement from the ideal barycenter

can lead to a high increase of fuel consumption [1]. Similar considerations apply when

loading trucks and container ships.

The aim of this work is to integrate realistic constraints related to e.g. load balancing,

cargo stability and weight limits, in the multi-dimensional BPP. The BPP poses additional

challenges compared to the CLP due to the supplementary objective of minimizing the

number of bins. In particular, in section 2 we discuss how to integrate bin-packing and

load balancing of items. The problem has only been considered in the literature in simpli-

fied versions, e.g. balancing a single bin or introducing a feasible region for the barycenter.

In section 3 we generalize the problem to handle cargo stability and weight constraints.



2 The integrated packing and balancing problem

Packing and balancing the load of a set of items represent two conflicting objectives and it

can be convenient to incorporate them in a single problem. In [2] we develop an integrated

approach for solving the multi-dimensional bin-packing problem with load balancing. The

goal is to arrange the items in the smallest number of bins, while ensuring the best overall

load balancing of the used bins, i.e. ensuring that the average barycenter of the loaded

bins falls as close as possible to an ideal point, for instance the center of the bin. We use:

• a Mixed-Integer Program (MIP) model. Despite having a quadratic number of variables

and constraints, the model is considerably more complex than the BPP as several new

sets of support binary variables and conditional constraints are necessary to optimize

load balancing. The model is able to solve only instances involving up to 20 items.

• a multi-level local search heuristic able to deal with large instances. The algorithm

takes advantage of the Fekete-Schepers representation of feasible packings in terms of

particular classes of interval graphs [3], and iteratively improves the load balancing of

a bin-packing solution using three different search levels:

1. The first level explores the space of transitive orientations (TROs) of the com-

plement graphs associated with the packing. This is made possible by exploiting

nice theoretical properties of interval graphs and a relation TRO-packing.

2. The second level modifies the structure of the interval graphs.

3. The third level exchanges items between bins by repacking proper n-tuples of

weakly balanced bins, coded inside a variable neighborhood search framework.

Extended computational experiments can be found in [2]. The results reveal that an

effective load balancing can be obtained, with a running time rarely exceeding 3-5 minutes

even for difficult instances with up to 200 items (C program on an Intel Core i5 with 8GB

RAM). When the optimal barycenter is the geometric center of the bin, for instance, more

than 95% of the initial imbalance can be removed by using the three search phases.

In Table 1 is a summary of the main features of the two approaches and the differences

between them. It will be useful when considering additional constraints in the next section.

Table 1: MIP vs. local search.

MIP Local search

algorithm type: exact heuristic

objective function: only L1 any, e.g. Lp

ideal barycenter: any any

instances handled: small medium/large



3 Including stability and weight constraints

In practical contexts, additional properties are relevant when packing containers to ensure

the stability of the cargo (see e.g. [4, 5]). Mechanical stability can be enforced at a static

or dynamic level, related to obtaining a stable motionless or moving cargo, respectively.

Moreover, a number of weight constraints may apply depending on the specific transport

application. In the following, we limit the discussion to static stability, which is by itself

challenging, and provide an overview of the different stability and weight requirements

considered.

Table 2: Static stability and weight constraints.

Property Description

Lower gapless Each box touches another box (or the bin) below it

Full base support The entire base of each box is in contact to other boxes (or the bin)

Partial base support A fix percentage of the box base is in contact to other boxes (or bin)

Barycenter support The box barycenter is located above the surface of a supporting box

Mechanical equilibrium The sum of external forces and torque acting on each box is zero

Load bearing Maximum pressure that can be applied over the top face of a box

Weight limit Items packed in each bin cannot exceed a given maximum weight

Weight distribution The weight is distributed within the bin according to certain criteria

In the previous section, we provided two tools to solve different instances of the load-

balanced bin-packing problem: an MIP model and a heuristic based on local search.

The goal now is to understand whether it is possible (and straightforward) to embed the

additional constraints of Table 2 into the two algorithms. In the remainder of the section,

we briefly discuss two of the properties; the others will be examined more in detail in the

paper following this abstract.

3.1 Gapless property

The local-search algorithm can be easily adapted to lower gapless requirements. Indeed,

each TRO of the z-interval graph complement can be associated to a lower gapless packing.

In other words, we can simply collapse the bunch of packings associated to a TRO to a

single lower gapless solution, narrowing in this way the search space.

The gapless property is, in contrast, very hard to model in the MIP framework. However,

if the ideal barycenter location is the center of the bin’s base, than enforcing the lower

gapless property is actually not needed, as an optimal solution necessarily satisfies it. If

not, it would be possible to move downwards at least one box in one bin, keeping the

others fixed, decreasing the total cost.



3.2 Weight limit

The MIP model contains binary variables cij = 1 if and only if item i is in bin j. Using

these variables, it is easy to identify the total load of a bin and impose a limit by adding

for each bin j the constraints
∑

i cijmi ≤ Wmax, where mi is the mass of item i. The

weight limit can also be formulated here as bin-dependent Wmax =Wmax
j .

Integrating weight limits in the heuristic algorithm affects both the construction phase

and external search (recombination of bins). The two phases are in a sense similar, as the

external search consists of applying a constructive heuristic to a certain number of bins.

Thus, both phases can be modified by closing earlier bins where no more boxes can be

added without violating the weight limit. If n bins cannot be recombined in the same

number n of bins, each fulfilling the weight limit, we discard the solution and go to the

next local search move.

3.3 Further work

Future work includes quantifying the impact of additional stability constraints on the

volume utilization of containers and on the objective function of the integrated load-

balanced bin-packing problem.
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1 Introduction

Vehicle routing problems are mostly solved to design minimum cost routes. In some cases, generally
when designing the routes for a given private fleet, a company may be ready to sacrifice savings on
cost to better balance the workload over its drivers. In such cases, the load of a driver or a vehicle is
generally measured by the length, cost or duration of a route. Accordingly, the length of the longest
route has been taken as equity measure and some min-max approaches have been proposed [Golden
et al., 1997]. An unfortunate consequence of this approach is that many solutions can have the same
equity measure once the length of the longest route has been found. Hence, significantly different
solutions are considered equivalent and other equity measures have been proposed. One of the most
studied measure in VRP, called range in Matl et al. [2016], considers the difference between the
longest and the shortest routes in the solution [Jozefowiez et al., 2002]. Nevertheless this measure
is not monotonic: it can be improved by increasing, even in an inconsistent way, the length of the
shortest route of a solution without decreasing the length of the others. In a recent computational
study where several route balancing models are compared, Halvorsen-Weare and Savelsbergh [2016]
provide many examples of so-called artificially balanced solutions that are considered to be good
when using the range objective. Matl et al. [2016] present a very interesting study of equity models
in VRPs, listing the desirable properties that should be satisfied by so-called inequality measures.
They compare a broad set of measures, both looking at their mathematical properties and based on
a numerical analysis on small CVRP instances. This analysis includes the lexicographic minimax
approach and shows its good properties.

As recently summarized by Ogryczak et al. [2014] in a survey on fair optimization and networks,
the lexicographic minimax approach has been used in domains such as network optimization, fa-
cility location and network optimization to produce equitable or fair solutions. This approach was
introduced under the name leximin (in a welfare maximization context) in social choice theory by
Sen [1970]. It has also been widely used under this name in constraint programming, to model
equity in combinatorial optimization problems [Bouveret and Lemâıtre, 2009].

The lexicographic minimax refines the min-max approach: informally speaking, when a minimal
value has been found for the longest route, the lexicographic minimax considers the second longest
route, the third longest route, and so on, until all ties have been broken. Mathematically, let us
denote (t1, ..., tm) the vector of route lengths of a solution. Let σ denote a permutation of indices
such that routes are ordered in decreasing order of length (ie. such that tσ(1) ≥ ... ≥ tσ(m)). Then
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a solution with route vector (t1, ..., tm) is a lexicographic minimax solution if for any other solution
with route lengths (t′1, ..., t

′
m):

(tσ(1), ..., tσ(m)) ≤lex (t′σ(1), ..., t
′
σ(m)).

In this paper, we consider the problem of solving the CVRP with two objective functions:
the sum of routing costs and the lexicographic minimax over routes costs. One complexity for
optimization algorithms is that the lexicographic minimax approach does not establish an evaluation
of how balanced a solution is. It is based on a binary relation which allows to compare two solutions
and determine if one is more balanced than the other. However, we believe that this binary relation
defines a dominance relation that can easily be integrated in VRP algorithms.

2 Solution method

We propose to integrate the lexicographic minimax approach in a multi-objective optimization
framework called Multi-Directional Local Search (MDLS) [Tricoire, 2012].

2.1 MDLS principle

MDLS offers a very simple local search framework but it still competes with state-of-the-art methods
when solving multi-objective optimization problems. In MDLS, a local search LSj is defined for
each objective j. This local search is later performed in order to improve solutions with respect to
objective j. A set of non-dominated solutions is kept in an archive and returned at the end of the
algorithm. An iteration consists in (i) selecting a solution from the archive, (ii) performing local
search on this solution for each objective/direction, thus producing a new feasible solution in each
direction and (iii) updating the archive using newly produced solutions.

2.2 Local search components

In our algorithm, we consider that local search consists of one Large Neighborhood Search (LNS)
iteration. Several ruin and recreate operators are defined for each objective. Hence, at each it-
eration, for each objective (i) a ruin and a recreate operator are randomly selected in the set of
operators for that objective and (ii) a new solution is produced using the selected operators. The
ruin quantity, used in the destroy operator, may be operator-dependent.

The cost operators are defined according to the classical LNS operators for the VRP [Pisinger
and Ropke, 2007]. The set of ruin operators that we use are: random removal, worst removal,
related removal and route removal. The recreate operators for the cost objective are the cheapest
insertion heuristic and the k-regret heuristic for k = 2, 3, 4.

The main contribution of this work is to introduce lexicographic minimax operators. They
constitute rather simple extensions of the relevant classical operators to the lexicographical minimax
approach. The ruin operators include the random removal and the related removal as well as the
following two operators:

• worst max removal: at each iteration this operator removes, from the longest route, the
customer that decreases the most the length of this route, until the number of removed
customers is equal to the ruin quantity.
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• longest route removal: in this operator, all customers from the longest route are removed,
until the number of removed customers is greater than or equal to the ruin quantity. Several
routes may be destroyed this way.

Two sets of recreate operators have been designed to guide the search towards lexicographic minimax
efficient solutions:

• The lexicographic minimax cheapest insertion and lexicographic minimax k-regret extend the
classical cheapest insertion heuristic and the k-regret heuristic according to the lexicographic
minimax approach.

• The min-max cheapest insertion and min-max k-regret extend these heuristics, but using only
the length of the longest route to guide the search and the solution cost increase to break ties.

Besides proposing these extensions, as the lexicographic minimax heuristics involve sorting route
vectors to compare solutions, we want to assess whether the faster min-max heuristics can be more
efficient to guide the search towards lexicographic minimax solutions.

2.3 Experiments

The designed MDLS is evaluated on the Christofides CVRP instances, which are traditionally used
to benchmark the VRP with load balancing.

We test three configurations, which all include cost operators and lexicographic minimax ruin
operators. Configuration leximax integrates the lexicographic minimax cheapest insertion and lexi-
cographic minimax k-regret. Configuration max integrates min-max cheapest insertion and min-max
k-regret. Configuration all includes all of these recreate operators for the lexicographic minimax
objective.

MDLS being stochastic, 10 runs are performed for each configuration and each instance. We
execute 1-minute as well as 30-minute runs.

For each instance, a reference set is constructed by taking the non-dominated union of the sets
returned by each run for each configuration (3×10 fronts in total). We first look at the performance
of each configuration on 1-minute runs. We consider two indicators: the percentage of solutions
from the reference front found in a given run, and the percentage of solutions found which are within
1% of a solution from the reference front. A solution x1 is within 1% of another solution x2 if, when
the cost and all route lengths of x2 are multiplied by 1.01, then x1 dominates this transformed
solution. This information is summarized in the two plots from Figure 1. On the left plot, for each
instance and each configuration, we represent the percentage of solutions of the reference front that
are found on each run. The distribution of the performance evaluation of each run is displayed
with a Box Plot. Apart from the vrpnc1 instance, it is clear that the percentage of solutions found
for each run remains quite low. Comparing the three configurations, it is not possible to clearly
state that one dominates the other on these experiments. The right plot shows the percentage of
solutions of the reference front that lie within a 1% distance of a solution returned by each run.
This plot shows that on a short runtime, although a large proportion of the reference front is not
found on each run, the returned approximation remains within close distance of this reference front
for most instances and most configurations. Again, we cannot state that a configuration dominates
the other.

Figure 2 presents the same Box Plots for a set of 30-minute runs. On the left plot, the proportion
of solutions of the reference front found on each separate run is slightly improved, but remains
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Figure 1: Boxplots charts for the number of solution of the reference front that have been found
and within 1% distance for each run and each instance in one minute.

quite low. When looking at the percentage of solutions within a 1 % distance of the returned
approximation, the performance is clearly good for all instances but vrpnc9 and vrpnc10. Although
configuration all gives a better performance on average over all instances, it is dominated by
configuration max on the vrpnc10 instance. It can also be pointed out that, except for instances
vrpnc13 and vrpnc14, the simple max configuration remains competitive with the more elaborate
leximax and all configurations.

3 Conclusion

We performed an adaptation of classical insertion heuristics for the lexicographic minimax; prelimi-
nary experiments show that the search for efficient solutions could be guided by insertion heuristics
based on a min-max criterion.

We believe that the lexicographic minimax approach is an interesting alternative that should be
considered to model load balancing in vehicle routing problems.
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Figure 2: Boxplots charts for the number of solution of the reference front that have been found
and within 1% distance for each run and each instance in 30 minutes.
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